Интернет-журнал "Домашняя лаборатория", 2007 №8
Шрифт:
До сих пор нами рассматривались только ??-преобразователи, содержащие одноразрядный АЦП (компаратор) и одноразрядный ЦАП (коммутатор). Блок-схема на рис. 3.19 представляет многоразрядный ?? АЦП, включающий n-разрядный параллельный (flash) АЦП и n-разрядный ЦАП. Очевидно, эта архитектура дает более широкий динамический диапазон при фиксированных коэффициентах избыточной дискретизации и порядке ??-модулятора. Стабилизация здесь проще, так как могут использоваться ??-модуляторы второго и более высоких порядков. Выходные сигналы, соответствующие паузам во входном сигнале, при использовании данной архитектуры имеют тенденцию к большей
Реальным недостатком этого метода является то, что линейность всего устройства зависит от линейности ЦАП, и требуется тонкопленочная лазерная подстройка для приближения к уровню 16-разрядной точности. Это делает чрезвычайно трудной в реализации многоразрядную архитектуру, в том числе и архитектуру АЦП.
Тем не менее, в настоящее время она применяется в звуковых ?? ЦАП (AD1852, AD1853, AD1854), где используются специальные методы скремблирования битов для гарантии линейности и устранения шума.
Описанные выше ?? АЦП содержат интеграторы, играющие роль ФНЧ, полоса пропускания которых начинается от 0 Гц, т. е. с уровня постоянного тока. Таким образом, максимум распределения их шума квантования смещен вверх по частоте. В настоящее время по такому принципу построено большинство коммерчески распространенных АЦП (хотя некоторые, предназначенные для использования в звуковых или коммуникационных приложениях, имеют полосовой фильтр вместо ФНЧ для устранения смещения по постоянному току). Нет никакой принципиально непреодолимой причины, по которой фильтры ??-модулятора должны быть непременно низкочастотными, за исключением того, что традиционно АЦП считались низкочастотными устройствами, а интеграторы проще в реализации, чем полосовые фильтры. При замене интеграторов в АЦП полосовыми фильтрами, показанной на рис. 3.20, максимумы распределения шумов квантования смещаются вверх и вниз по частоте, так что область, соответствующая полосе сигнала, становится фактически свободной от шумов (см. Приложение 1).
Далее, если цифровой фильтр запрограммирован так, что его полоса пропускания находится в этой области, мы получаем полосовой ?? АЦП вместо низкочастотного. Такие устройства полезны для прямого преобразования ПЧ в цифровой код, в устройствах цифровой радиосвязи, ультразвуковых приложениях и других задачах, использующих субдискретизацию. Но в этом случае модулятор и цифровой полосовой фильтр должны быть разработаны для определенных частот, требуемых данным приложением, что несколько ограничивает гибкость описываемого подхода.
В приложениях, использующих субдискретизацию и полосовые ?? АЦП, минимальная частота дискретизации должна быть, по крайней мере, в два раза больше удвоенной ширины полосы сигнала BW. Сигнал концентрируется вокруг несущей частоты fc. Типичная цифровая радиосистема, использующая центральную частоту 455 кГц и ширину полосы сигнала 10 кГц, описана в Приложении 1. Частота избыточной дискретизации Kfs = 2 MSPS и выходная скорость потока цифровых данных fs = 20 KSPS обеспечивают динамический диапазон 70 дБ в пределах ширины полосы сигнала.
Большинство ?? АЦП имеют встроенный цифровой фильтр
Программируемый фильтр обладает способностью гибко менять число своих коэффициентов и коэффициент децимации. Фильтр может иметь до 108 коэффициентов, до 5 каскадов децимации и коэффициент децимации в диапазоне от 2 до 256. Точность коэффициентов — 24 разряда, арифметическая точность — 30 разрядов.
Модель AD7725 содержит постпроцессор PuldeDSP™ (торговая марка Systolix) компании Systolix, который позволяет программировать характеристики фильтра через параллельный или последовательный интерфейс микропроцессора. Кроме того, характеристики фильтра могут загружаться при включении/сбросе питания из его внутреннего ПЗУ или из внешнего программируемого ПЗУ.
Постпроцессор является полностью программируемым ядром, которое обеспечивает, мощность обработки до 130 миллионов операций умножения с накоплением (MAC) в секунду. Для программирования постпроцессора пользователь должен создать конфигурационный файл, который содержит настраиваемые данные фильтра. Этот файл может быть сгенерирован компилятором, который поставляется компанией Analog Devices. Компилятор AD7725 воспринимает набор коэффициентов фильтра как исходные данные и автоматически создает необходимый файл.
Файл коэффициентов для характеристики КИХ-фильтра (FIR) может быть сгенерирован с использованием пакетов проектирования цифровых фильтров, таких как QEDesign от Momentum Data Systems. Характеристики фильтра можно вывести на печать, позволяя, таким образом, пользователю ознакомиться с ней перед генерацией коэффициентов фильтра. Процессор осуществляет доступ к данным на скорости 2,4 MSPS. Когда в многокаскадном фильтре используется прореживание, первый каскад фильтра работает с быстродействием 2,4 MSPS, благодаря чему пользователь может выполнять прореживание между каскадами. Количество обслуживаемых процессором сигналов равно 108. Поэтому возможна генерация одного 108-сигнального фильтра или может быть спроектирован многокаскадный фильтр на 108 сигналов. Фильтр может иметь характеристики ФНЧ, ФВЧ, полосового режекторного фильтра или просто полосового фильтра.
Модель AD7725 питается однополярным напряжением +5V, имеет встроенный источник опорного напряжения 2,5V и выполнена в 44-контактном корпусе (PQFP). При работе на полную мощность рассеиваемая энергия равна приблизительно 350 мВт. Имеется режим работы с пониженным потреблением, который позволяет использовать частоту тактового генератора 10 MSPS. Максимальная потребляемая мощность в пассивном режиме составляет 200 мВт. Более подробное описание функционирования AD7725 можно найти в разделе 9.