Интернет-журнал "Домашняя лаборатория", 2008 №2
Шрифт:
Тотклон. = -0.027 — 0.01889*Т + 0.0008159*Т2 – 0.00000749*Т3
Отнимая от значений измерителя величину поправки, получаем истинное значение температуры. Т. е.
Тистин. = Т — Тотклон., или
Тистин. = 0.027 + 1.01889*Т — 0.0008159*Т2 + 0.00000749*Т3
П. Иванов, С. Семушин
Независимо от конструктивного исполнения любой источник тока состоит из одних и тех же функциональных узлов (рис. 1). Это первичный источник питания, регулирующий элемент, датчик тока и нагрузка. В большинстве конструкций используется также цепь обратной связи, соединяющая датчик тока с регулирующим элементом. Ток в нагрузке устанавливается изменением параметров цепи обратной связи или датчика тока [1–3].
Если ток в цепи обратной связи достаточно мал, что обычно выполняется на практике, то через последовательно соединенные источники питания, датчик тока, регулирующий элемент и нагрузку протекает одинаковый ток. При этом условии практически любой вариант схемы получается перестановкой последовательно соединенных узлов и выбором точки заземления. Если же ток в цепи обратной связи соизмерим с током в основной цепи, необходимо учитывать появление погрешностей при установке нужного тока в нагрузке. Однако существуют схемные решения, в которых ток обратной связи протекает как через датчик тока, так и через нагрузку, что компенсирует возникновение ошибки.
Рис. 1. Функциональная схема источника тока
В качестве регулирующего элемента в практических схемах обычно применяют одиночные или чаще составные транзисторы, в качестве датчика тока — резистор или диод. При выборе точки заземления также исходят из практических соображений.
Для понимания работы источников тока рассмотрим типовые схемы, получаемые из общей функциональной схемы, показанной на рис. 1.
В качестве простейшего источника тока хорошо работает обычный транзистор с резистором в эмиттерной цепи (рис. 2,а). Сила тока в нагрузке определяется выражением
Iк = (Uвх — Uбэ)/R1 (1)
где Iн — ток в нагрузке, Uвх — входное напряжение, Uбэ — падение напряжения на переходе база-эмиттер транзистора VT1, R1 — сопротивление датчика тока R1. Меняя величину Uвх, можно установить требуемый ток нагрузки. Обычно для задания входного напряжения с необходимой точностью используются источники опорного напряжения (ИОН) [1]. В этой схеме обратная связь
Вследствие этого сила тока в нагрузке зависит как от сопротивления нагрузки, так и от температуры и параметров транзистора. Тем не менее, благодаря своей простоте это устройство часто применяется там, где не требуется высокой стабильности тока в нагрузке. Более стабильно работает устройство, схема которого показана на рис. 2,б, которое благодаря своей простоте и высокой повторяемости находит широчайшее применение в интегральной схемотехнике [2].
Рис. 2. Схема простых источников тока
Наиболее широко используемой схемой источника тока с применением операционного усилителя (ОУ) является классическая схема, приведенная на рис. 3.
Рис. 3. Схема с использованием ОУ
В этой схеме регулирующий элемент — транзистор VT1 — управляется ОУ DA1, который стремится уравнять напряжения на своих выводах — инвертирующем и неинвертирующем. При этом сила тока в нагрузке Rн определяется выражением
Iн = Uвх/R1 (2)
Для нормальной работы схемы напряжение на нагрузке Uн не должно превышать значения, определяемого выражением
Uн = Iн•Rн < Uп — Uкэ. нас — I•R1
I = Iн (3)
где Uп — напряжение источника питания, Uкэ. нас — напряжение насыщения транзистора VT1, R1 — сопротивление датчика тока R1. В этой схеме ток в нагрузке Iн отличается от тока I в датчике тока R1 на величину ошибки, определяемую силами токов в цепи обратной связи, а именно: тока базы 16 транзистора VT1 и входного тока IвхОУ DA1:
?I = Iв— Iвх. (4)
Очевидно, что величина ошибки установления требуемого тока в нагрузке тем меньше, чем меньше входной ток ОУ DA1 и чем больше коэффициент усиления транзистора VT1. По этой причине на практике в качестве регулирующего элемента обычно применяются составные транзисторы.
Рис. 4. Схема с использованием ОУ
Рис. 5. Схема с плавающей нагрузкой