Интернет-журнал "Домашняя лаборатория", 2008 №5
Шрифт:
Блок питания (рис. 3) собран по распространенной схеме. Опорные напряжения формируются стабилитронами VD2-VD6. Сердечник трансформатора питания имеет сечение 2,5 см2. Его первичная обмотка намотана проводом ПЭВ 0,1 и содержит 5000 витков. Вторичные обмотки II и III намотаны проводом ПЭВ 0,14 и содержат 2х400 витков; обмотка IV — 20 витков провода ПЭВ 0,31.
Рис. 3. Принципиальная схема блока питания от
Для увеличения точности измерения во всем диапазоне 0…99,9 °C можно использовать кварцевый генератор секундных импульсов, схема которого показана на рис. 4.
Рис. 4. Принципиальная схема кварцевого генератора
Задающий
Конструкция и детали. В термометре применены постоянные резисторы MЛT 0,125, подстроечные резисторы R13, R14 — СП5-3 проволочные, многооборотные. Применение однооборотных резисторов нежелательно, так как пороги срабатывания интегратора должны быть выставлены очень точно. Резистор R15 — СПЗ-1Б или СПЗ-22. Конденсатор С3 — К10-23 или КМ4, КМ5. Его лучше составить из нескольких конденсаторов, имеющих ТКЕ разных знаков, так, чтобы суммарный ТКЕ был близок к нулю. Эти меры необходимы для обеспечения максимальной точности измерения температуры. Для этой же цели в преобразователе используется ОУ К574УД1Б. Если достаточна точность измерения не более 0,3…0,5 °C, можно использовать ОУ КНОУД8Б. Конденсатор С1 в генераторе может быть заменен другим, имеющим изоляцию из фторопласта или тефлона, соответствующей емкости и габаритов. Транзисторы блока питания VT1, VT2 могут быть КТ502, КТ503; КТ201, КТ203. Счетчик может быть построен на ИС серии К155, но тогда возрастет потребляемая мощность, потребуется внести изменения в блок питания и блок индикации прибора. Датчик прибора — германиевый точечный диод Д9. Его выводы согнуты в одну сторону, припаяны к кабелю с фторопластовой изоляцией, на половину корпуса надета трубка из полихлорвинила. Когда датчик опускается в токопроводящую среду, нужно следить, чтобы он не погружался более чем на половину длины корпуса. Для работы в агрессивных средах, с кислотами и щелочами, датчик следует защитить эпоксидной смолой, обеспечивающей его изоляцию и хорошую теплопроводность. Если возникает необходимость использования нескольких датчиков, расположенных в разных местах при точности измерения не более 0,3…0.5 °C, можно использовать датчики КД518А, предварительно отобрав их по одинаковому падению напряжения при токе через диод 1 мА, также потребуется установить переключатель П2К на необходимое количество датчиков. Для измерения температуры фоторастворов на корпусе датчика можно закрепить кусочек пробки или пенопласта так, чтобы подводящие концы датчика были изолированы, а корпус касался измеряемой среды и плавал на ее поверхности.
Весь термометр собран на трех печатных платах из фольгированного стеклотекстолита толщиной 1,5 мм. На одной из них, с габаритами 130х40 мм, из двустороннего стеклотекстолита собран генератор прямоугольных импульсов со счетчиком и индикаторами (рис. 5).
Рис. 5. Печатная плата генератора, счетчика и индикатора
На второй, с габаритами 80x40 мм, собран преобразователь температура — частота (рис. 6) и на третьей, с габаритами 130х40 мм, собран блок питания, включая и трансформатор (рис. 7).
Рис. 6. Печатная плата преобразователя температура-частота
Рис. 7. Печатная плата блока питания
Платы с помощью уголков крепятся к основанию из гетинакса толщиной 3 и размером 130х1х90 мм. Все три платы размещены в корпусе размером 135х100х50 мм, спаянном из фольгированного
Для калибровки преобразователя от базы транзистора VT3 отсоединяют генератор и к выходу преобразователя (коллектор VT3) присоединяют частотомер. Предварительно резистором R15 устанавливают ток через датчик VD5, равный 1,0 мА. Затем датчик помещают в среду, имеющую температуру 100 °C (кипящая вода), одновременно контролируя температуру термометром. Резистором R14 устанавливают выходную частоту 1000 Гц. Затем датчик охлаждают до 0 °C (тающий снег) и резистором R13 срывают колебания интегратора — частота 0 Гц. Эти операции повторяют 3–4 раза для устранения взаимного влияния резисторов R13 и R14. Затем присоединяют генератор к базе транзистора VT3 и резистором R2 устанавливают показания счетчика при температуре 99,9 °C, равным 99,9. После этого проверя ют линейность устройства во всем диапазоне. При необходимости настройку повторяют.
Универсальный регулятор мощности
В. Гребенщиков, В. Амелин
Предлагаемый вниманию радиолюбителей универсальный регулятор мощности (УРМ) предназначен для плавной регулировки мощности в нагрузке до трех киловатт. С его помощью можно поддерживать постоянными температуру, освещенность и другие параметры.
Возможность регулирования больших мощностей весьма актуальна при конструировании ЦМУ или создании мощных термостабилизаторов.
Универсальный регулятор мощности состоит из генератора пилообразного напряжения, устройства управления тиристором, дифференциального каскада для поддержания постоянной температуры (или освещенности) и блока питания. Принципиальная схема УРМ представлена на рис. 1.
Рис. 1. Принципиальная электрическая схема универсального регулятора мощности
Генератор пилообразного напряжения собран на транзисторе УЗ с RC цепочкой (R3R5C1) и стабилитронах V1 и V2. Принцип его работы следующий: конденсатор С1 периодически заряжается через резисторы R1 и R5, а затем быстро разряжается через транзистор УЗ в то время, когда он открыт. Постоянная времени цепи R3R5C1 выбрана такой, что за время одной полуволны выпрямленного напряжения конденсатор С1 успевает зарядиться лишь до напряжения +15 В. На конденсаторе получается напряжение, близкое к пилообразному и синхронированное с напряжением сети. Синхронизация обеспечивается отрицательными импульсами, снимаемыми с делителя напряжения R1R2 и стабилитронов V1, V2, открывающих транзистор V3 в конце каждого полупериода пульсирующего выпрямленного напряжения. На рис. 2 приведены временные диаграммы, поясняющие работу генератора пилообразного напряжения и схемы управления тиристором. Стабилитроны V4, V5 предохраняют по следующие каскады от перегрузок по напряжению. Транзистор V6, включенный по схеме эмиттерного повторителя, служит для согласования.
Рис. 2. Временные диаграммы напряжений:
а — генератора пилообразного напряжения; б — устройства управления тиристором при верхнем положении движка резистора R5; в — устройства управления тиристором при нижнем положении движка резистора R5
Устройство управления тиристором состоит из дифференциального каскада, собранного на транзисторах V7 и V8, и усилителя тока, выполненного на транзисторе V9. Это устройство вырабатывает прямоугольные импульсы, длительность которых меняется в зависимости от напряжения на базе транзистора V8 и пилообразного напряжения, поступающего на базу транзистора V7. В течение каждой полуволны выпрямленного напряжения тиристор включается на большее или меньшее время, благодаря чему и достигается плавная регулировка мощности.
Для поддержания постоянной температуры или освещенности используется дифференциальный каскад, собранный на транзисторах V11 и V12, в одно плечо которого включен терморезистор R10, а в другое — переменный резистор R15, задающий нужную температуру. С повышением температуры уменьшается сопротивление терморезистора и соответственно напряжение на базе транзистора V11. Это напряжение сравнивается с напряжением, снимаемым с потенциометра R15. Разность напряжений усиливается дифференциальным усилителем и подается на базу транзистора V8, что приводит к уменьшению выделяемой на нагрузке мощности. С понижением температуры на базу V8 подается меньшее напряжение и соответственно мощность в нагрузке возрастает.