Чтение онлайн

на главную - закладки

Жанры

Искатели необычайных автографов или Странствия, приключения и беседы двух филоматиков
Шрифт:

— Разве? — усмехается тот. — Другие всегда знают о нас больше, чем мы сами. Во всяком случае, если в моей жизни и было что-нибудь подобное, то сам я об этом начисто забыл. Зато наверняка помню, что арифметический треугольник был известен в Древней Индии и в Древнем Китае. А потому предоставь лучше слово мэтру Тарталье. Надеюсь, он-то свою причастность к арифметическому треугольнику отрицать не станет.

— Ни-ни-ни в коем случае, — подает голос высокий итальянец с глубокими шрамами на подбородке, одетый по моде шестнадцатого столетия. — Хотя числа в этом треугольнике я ра-ра-расположил так, что правильнее было бы называть его прямоугольником.

— Какое, однако, удивительное совпадение! — не выдерживает Фило. — «Тарталья» — по-итальянски «заика»,

а этот уважаемый мэтр и впрямь заикается.

— Ничего удивительного, — поясняет Асмодей. — Прозвище Тартальи сей даровитый синьор получилкак раз за свое заикание, которое началось у него после сильного ранения в нижнюю челюсть.

— А настоящая его фамилия как? — продолжает приставать любопытный Фило.

Но Асмодей лишь досадливо пожимает плечами. Не всегда ж ему знать то, чего не знает никто! И вообще, дадут ему наконец смотреть передачу?

— Однако, до-до-дорогие мэтры, — продолжает Тарталья, — хочу обратить ваше внимание на то, что арифметические треугольники возникали в разные времена и в разных странах совершенно самостоятельно. Свой я, во-во-во всяком случае, придумал сам.

— И я тоже, достопочтенный мэтр Тарталья, — присоединяется Паскаль, — потому что ваши изыскания были мне, к сожалению, неизвестны.

— Вы забыли сказать главное, уважаемый мэтр Паскаль — вмешивается представительный горбоносый красавец с густыми бархатными бровями и легкой любезной улыбкой в уголках рта.

— Насколько я понял, мэтр Лейбниц, вы просите слова, — строго намекает Пифагор. — Рад его вам предоставить.

Тот, извиняясь, склоняет набок голову в крутокудром каштановом парике. Достопочтенному председателю незачем затрудняться! Он, Лейбниц, хотел лишь заметить, что заслуга мэтра Паскаля не столько в том, что он открыл арифметический треугольник, сколько в том, что ему удалось вывести формулу сочетаний. Ту самую формулу, с помощью которой легко вычислить любой элемент числового треугольника.

— Прошу прощения! — живо перебивает Паскаль. — Одновременно со мной ту же формулу вывел мэтр Пьер Ферма.

— Не отрицаю! — весело басит Ферма. — И все-таки честь ознакомить собравшихся с некоторыми свойствами формулы сочетаний я предоставляю вам.

Паскаль молча кланяется и, подойдя к стоящей у камина грифельной доске, выписывает на ней две таблицы.

— Как видите, — поясняет он, — арифметический треугольник изображен здесь в двух видах: в числовом и условном, где каждый член его выражен через число сочетаний из номера строки по номеру своего места в ней. Разумеется, верхней строке и первому числу каждой строки присвоен нулевой номер. Далее обратите внимание на то, что все сочетания, у которых верхний индекс нуль, равны единице. Почему это так, понять нетрудно. Стоит только сравнить обе таблицы. Выберем, допустим, шестую строку (ее порядковый номер 5) и рассмотрим два ее числа, хотя бы 5 и 5. Одно из них в условном треугольнике обозначено как C51, второе — как C54. Но ведь числа эти равны между собой, ибо каждое из них порознь равно 5: C51 = C54 = 5. В свою очередь C51 можно записать какC55–4. И если это обобщить для любой строки (n) и любого порядкового числа в ней (m), то получится любопытное свойство сочетаний:

(це из эн по эм равно це из эн по эн минус эм). Отсюда ясно, что так как с одной

стороны Cnn = 1, а с другой

то и выходит, что Cn = 1. Ну, а дальше уж, для общности правила, условились и С тоже считать единицей. Вот вам простой и удобный способ отыскивать любое, даже самое большое число сочетаний. И потому вопрос, чему равно, скажем, число сочетаний из тысячи по девятисот девяноста девяти, не должен пугать даже школьника, — вычислить это проще простого:

— За-за-замечательно! — восхищается Тарталья. — Я бы до такого ни-ни-никогда не додумался.

— Не клевещите на себя, дорогой мэтр Тарталья, — протестует Паскаль. — Просто вы жили на сто лет раньше, и время формулы сочетаний еще не пришло. А теперь попрошу нашего досточтимого председателя предоставить слово мэтру Лейбницу, ибо я горю желанием узнать, что сделал с арифметическим треугольником он.

— С величайшим удовольствием! — кивает Пифагор. — Тем более что я и сам давно дожидаюсь такого случая.

— Собственно говоря, я шел по стопам мэтра Паскаля, — уголками рта улыбается Лейбниц, — но мой треугольник составлен в обратном порядке. Так сказать, шиворот-навыворот. Прежде всего вместо целых чисел я взял дробные. А уж из этого вытекает и все остальное.

Он вытирает доску влажной тряпкой и пишет на ней другую таблицу.

— Этот свой треугольник я назвал гармоническим, — поясняет он.

— Превосходно! — горячо одобряет Пифагор. — Всегда говорил, что главное в мире — гармония.

— Вполне с вами согласен, — кланяется Лейбниц. — Но название это объясняется тем, что в правом и левом наклонных рядах моего треугольника стоят числа, которые принято называть гармоническим рядом: 1/1,1/2,1/3,1/4, 1/5, 1/6, 1/7… Особенность этого ряда заключается в том, что сумма его членов: 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7… не стремится ни к какому определенному числу — иначе говоря, она бесконечна. Не то что, скажем, другой ряд: 1/2 + 1/22 + 1/23 + 1/24 + 1/25 + … = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + …, сумма которого стремится к единице. Так вот, если в треугольнике мэтра Паскаля каждое число равно сумме двух чисел, стоящих НАД ним (справа и слева), то в моем треугольнике каждый член равен сумме чисел, стоящих ПОД ним (также справа и слева). Например 1/6 = 1/12 + 1/12. А потому, если в треугольнике мэтра Паскаля общий член выражается формулой Cnm, то в моем он выглядит так:

Вот, например, в третьем ряду сверху второй член таков:

— О-о-очень любопытно! — восклицает экспансивный Тарталья.

— Но это еще не все! — продолжает Лейбниц. — Выберем какой-нибудь наклонный ряд — скажем, второй: 1/2 1/6 1/12 1/20 1/30 1/42. Начнем вычисление с любого, хотя бы со второго его члена, то есть с 1/6. Тогда из сказанного о законе образования членов треугольника прежде следуют такие равенства:

1/6 — 1/12 = 1/12

Поделиться:
Популярные книги

Хорошая девочка

Кистяева Марина
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Хорошая девочка

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Черный Маг Императора 10

Герда Александр
10. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 10

Одержимый

Поселягин Владимир Геннадьевич
4. Красноармеец
Фантастика:
боевая фантастика
5.00
рейтинг книги
Одержимый

Фиктивная жена

Шагаева Наталья
1. Братья Вертинские
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Фиктивная жена

Хозяин Теней 3

Петров Максим Николаевич
3. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Хозяин Теней 3

Маленькая хозяйка большого герцогства

Вера Виктория
2. Герцогиня
Любовные романы:
любовно-фантастические романы
7.80
рейтинг книги
Маленькая хозяйка большого герцогства

Курсант: Назад в СССР 10

Дамиров Рафаэль
10. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 10

Гридень 2. Поиск пути

Гуров Валерий Александрович
2. Гридень
Детективы:
исторические детективы
5.00
рейтинг книги
Гридень 2. Поиск пути

Ищу жену для своего мужа

Кат Зозо
Любовные романы:
любовно-фантастические романы
6.17
рейтинг книги
Ищу жену для своего мужа

Оружие победы

Грабин Василий Гаврилович
Документальная литература:
биографии и мемуары
5.00
рейтинг книги
Оружие победы

Звездная Кровь. Изгой II

Елисеев Алексей Станиславович
2. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
технофэнтези
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой II

Конунг Туманного острова

Чайка Дмитрий
12. Третий Рим
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Конунг Туманного острова

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке