Чтение онлайн

на главную - закладки

Жанры

Искусственный интеллект. Машинное обучение
Шрифт:

neighbors = []

if i > 0: neighbors.append(value_function[i – 1][j])

if i < len(maze) – 1: neighbors.append(value_function[i + 1][j])

if j > 0: neighbors.append(value_function[i][j – 1])

if j < len(maze[0]) – 1: neighbors.append(value_function[i][j + 1])

value_function[i][j] = max(neighbors) – 1

# Инициализируем путь

path = [start_position]

current_position = start_position

# Ищем оптимальный путь, двигаясь по ячейкам с максимальной функцией ценности

while maze[current_position] != 2:

next_positions = []

next_values = []

#

Перебираем соседние ячейки

for i in [-1, 0, 1]:

for j in [-1, 0, 1]:

if (i == 0 or j == 0) and (i != 0 or j != 0):

neighbor_position = (current_position[0] + i, current_position[1] + j)

if 0 <= neighbor_position[0] < len(maze) and 0 <= neighbor_position[1] < len(maze[0]):

next_positions.append(neighbor_position)

next_values.append(value_function[neighbor_position[0]][neighbor_position[1]])

# Двигаемся к следующей ячейке с максимальной функцией ценности

next_position = next_positions[np.argmax(next_values)]

path.append(next_position)

current_position = next_position

return path

# Находим оптимальный путь

optimal_path = find_optimal_path(maze)

# Выводим лабиринт с оп

тимальным путем

for i in range(len(maze)):

for j in range(len(maze[0])):

if (i, j) in optimal_path:

print('*', end=' ')

else:

print(maze[i][j], end=' ')

print

```

Этот код находит оптимальный путь через лабиринт, используя динамическое программирование, и выводит лабиринт с пометкой оптимального пути символом "*".

Глубокое обучение в RL, особенно алгоритмы Deep Q-Networks (DQN), представляет собой метод, который применяет глубокие нейронные сети для решения задач RL, алгоритмы Deep Q-Networks (DQN) в частности, решают задачу обучения с подкреплением, используя глубокие нейронные сети для аппроксимации функции Q – функции, которая оценивает ожидаемую сумму награды, полученную агентом при выполнении определенного действия в определенном состоянии.

Применение глубокого обучения в RL позволяет агенту эффективно обучаться в сложных и больших пространствах состояний и действий, что делает его применимым для широкого спектра задач. Это возможно благодаря гибкости и мощности глубоких нейронных сетей, которые способны выучивать сложные зависимости между входными данными и целевыми значениями Q-функции.

Основные шаги алгоритма DQN включают в себя собирание обучающего опыта, обновление параметров нейронной сети путем минимизации ошибки между предсказанными и фактическими значениями Q-функции, и использование обновленной сети для принятия решений в среде. Этот процесс повторяется многократно, пока агент не достигнет сходимости или не выполнит другие критерии останова.

DQN и другие алгоритмы глубокого обучения в RL демонстрируют впечатляющие результаты в таких задачах, как игры

на Atari, управление роботами и автономное вождение, что подтверждает их эффективность и перспективность в решении сложных задач обучения с подкреплением.

Пример 1

Примером задачи, решаемой с использованием алгоритма Deep Q-Networks (DQN), может быть обучение агента для игры в видеоигру, такую как игра в "Pong" на платформе Atari.

1. Определение среды: В этой задаче среда представляет собой видеоигру "Pong", где агент управляет ракеткой, пытаясь отбить мяч и забить его в сторону противника. Состояние среды определяется текущим кадром игры.

2. Действия агента: Действия агента включают движение ракетки вверх или вниз.

3. Награды: Агент получает положительную награду за каждый успешный удар мяча и отрицательную награду за пропущенный мяч.

4. Функция Q: Функция Q оценивает ожидаемую сумму награды, которую агент может получить, выбирая определенное действие в определенном состоянии.

Алгоритм DQN использует глубокую нейронную сеть для аппроксимации функции Q. Во время обучения агент играет в игру множество раз, собирая опыт, состоящий из состояний, действий, наград и следующих состояний. Этот опыт используется для обновления параметров нейронной сети так, чтобы минимизировать ошибку между предсказанными и фактическими значениями функции Q.

После обучения агент использует обновленную нейронную сеть для выбора оптимальных действий в реальном времени, максимизируя ожидаемую сумму будущих наград и, таким образом, достигая высокого уровня игры в "Pong".

Рассмотрим пример кода для обучения агента на основе алгоритма Deep Q-Networks (DQN) для игры в "Pong" с использованием библиотеки PyTorch и среды Atari:

```python

import gym

import torch

import torch.nn as nn

import torch.optim as optim

import random

import numpy as np

# Определение модели нейронной сети

class DQN(nn.Module):

def __init__(self, input_dim, output_dim):

super(DQN, self).__init__

self.fc1 = nn.Linear(input_dim, 128)

self.fc2 = nn.Linear(128, 64)

self.fc3 = nn.Linear(64, output_dim)

def forward(self, x):

x = torch.relu(self.fc1(x))

x = torch.relu(self.fc2(x))

x = self.fc3(x)

return x

# Функция для выбора действия с использованием эпсилон-жадной стратегии

def select_action(state, epsilon):

if random.random < epsilon:

return env.action_space.sample

else:

with torch.no_grad:

return np.argmax(model(state).numpy)

# Параметры обучения

epsilon = 1.0

epsilon_min = 0.01

epsilon_decay = 0.995

gamma = 0.99

lr = 0.001

batch_size = 64

memory = []

memory_capacity = 10000

target_update = 10

num_episodes = 1000

# Инициализация среды и модели

Поделиться:
Популярные книги

Долгий путь домой

Русич Антон
Вселенная EVE Online
Фантастика:
космическая фантастика
попаданцы
6.20
рейтинг книги
Долгий путь домой

Мастер Разума V

Кронос Александр
5. Мастер Разума
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Мастер Разума V

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Монстр из прошлого тысячелетия

Еслер Андрей
5. Соприкосновение миров
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Монстр из прошлого тысячелетия

Возвышение Меркурия. Книга 12

Кронос Александр
12. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 12

История "не"мощной графини

Зимина Юлия
1. Истории неунывающих попаданок
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
История немощной графини

Каторжник

Шимохин Дмитрий
1. Подкидыш
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Каторжник

Сын Тишайшего

Яманов Александр
1. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.20
рейтинг книги
Сын Тишайшего

Real-Rpg. Еретик

Жгулёв Пётр Николаевич
2. Real-Rpg
Фантастика:
фэнтези
8.19
рейтинг книги
Real-Rpg. Еретик

Игра на чужом поле

Иванов Дмитрий
14. Девяностые
Фантастика:
попаданцы
альтернативная история
5.50
рейтинг книги
Игра на чужом поле

Матабар III

Клеванский Кирилл Сергеевич
3. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар III

О, мой бомж

Джема
1. Несвятая троица
Любовные романы:
современные любовные романы
5.00
рейтинг книги
О, мой бомж

Бастард Императора. Том 3

Орлов Андрей Юрьевич
3. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 3