Чтение онлайн

на главную - закладки

Жанры

Искусственный интеллект. Машинное обучение
Шрифт:

Основная концепция RNN заключается в использовании обратных связей для передачи информации от предыдущих шагов последовательности к текущему. Таким образом, каждый элемент в последовательности обрабатывается с учетом информации о предыдущих элементах, что позволяет модели учитывать контекст и зависимости между элементами.

Однако классические RNN имеют проблему исчезающего градиента, которая возникает при обучении на длинных последовательностях данных. Это ограничивает способность модели улавливать зависимости на больших временных промежутках, так как градиенты

могут становиться слишком малыми или исчезать в процессе обратного распространения ошибки.

Для решения этой проблемы были разработаны различные модификации RNN, такие как LSTM (Long Short-Term Memory) и GRU (Gated Recurrent Unit), которые используют специальные механизмы памяти и вентили для более эффективного управления информацией внутри сети. Эти модели стали стандартом в области обработки последовательных данных и успешно применяются в широком спектре задач, включая машинный перевод, генерацию текста, анализ тональности и многое другое.

Трансформеры – представляют собой революционное развитие в области обработки естественного языка (NLP), представленное в работе "Attention is All You Need" в 2017 году. Они представляют собой модели, основанные на механизме внимания, который позволяет модели фокусироваться на различных частях входных данных при выполнении задачи. Основной идеей трансформеров является использование механизма внимания для эффективного учета контекста и зависимостей между словами в тексте без необходимости рекуррентных связей, что позволяет достичь параллельной обработки данных.

Трансформеры, в отличие от рекуррентных нейронных сетей (RNN) и сверточных нейронных сетей (CNN), не имеют ограничения на длину входной последовательности. Это достигается благодаря механизму внимания, который позволяет модели фокусироваться на различных частях входных данных независимо от их относительного положения в последовательности. Таким образом, трансформеры могут эффективно обрабатывать как короткие, так и длинные тексты без необходимости разделения их на фрагменты или уменьшения их длины.

Параллельная обработка всех элементов входной последовательности делает трансформеры вычислительно эффективными и способными обрабатывать большие объемы текстовых данных. Это позволяет модели обучаться на больших корпусах текста и извлекать полезные зависимости из огромных объемов информации.

Благодаря этим преимуществам трансформеры стали широко применяться в различных задачах обработки естественного языка, таких как машинный перевод, генерация текста, суммаризация текста, вопросно-ответные системы и многое другое. Их способность эффективно обрабатывать длинные тексты и работать с большими объемами данных делает их важным инструментом для решения широкого круга задач в области NLP.

Кроме того, трансформеры устойчивы к проблеме исчезающего градиента, что позволяет им обучаться на длинных последовательностях данных и эффективно улавливать долгосрочные зависимости в тексте. Это сделало их очень популярными и широко используемыми в различных задачах NLP, таких как машинный перевод, генерация текста, вопросно-ответные системы

и многие другие.

Пример

Давайте рассмотрим пример использования трансформеров для задачи машинного перевода. Предположим, у нас есть набор параллельных текстов на английском и французском языках, и мы хотим обучить модель для перевода текстов с английского на французский.

1. Подготовка данных: Сначала мы предварительно обрабатываем данные, токенизируя тексты и преобразуя слова в числовые токены с помощью словаря. Каждое предложение входного языка (английского) и соответствующее ему предложение выходного языка (французского) представляют собой пару последовательностей токенов.

2. Создание модели трансформера: Затем мы создаем модель трансформера, состоящую из нескольких слоев кодировщика и декодировщика. Каждый слой содержит множество механизмов внимания, позволяющих модели фокусироваться на различных частях входных и выходных последовательностей.

3. Обучение модели: Мы обучаем модель на параллельных данных, используя метод обучения с учителем. В процессе обучения модель постепенно настраивает свои веса таким образом, чтобы минимизировать ошибку между предсказанными и фактическими переводами.

4. Оценка качества перевода: После обучения мы оцениваем качество перевода модели на отложенной выборке, используя метрики, такие как BLEU (Bilingual Evaluation Understudy), которая оценивает совпадение предсказанных переводов с эталонными переводами.

5. Использование модели для перевода: Наконец, после успешного обучения и оценки качества модели, мы можем использовать ее для перевода новых текстов с английского на французский язык. Модель принимает на вход предложение на английском языке и генерирует соответствующий перевод на французский язык.

Рассмотрим пример кода для обучения трансформера на задаче машинного перевода с использованием библиотеки PyTorch и библиотеки для работы с естественным языком – Transformers.

```python

import torch

from transformers import BertTokenizer, BertModel, BertForMaskedLM

from torch.utils.data import Dataset, DataLoader

# Подготовка данных

class TranslationDataset(Dataset):

def __init__(self, texts, tokenizer, max_length=128):

self.texts = texts

self.tokenizer = tokenizer

self.max_length = max_length

def __len__(self):

return len(self.texts)

def __getitem__(self, idx):

input_text = self.texts[idx][0]

target_text = self.texts[idx][1]

input_encoding = self.tokenizer(input_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt")

target_encoding = self.tokenizer(target_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt")

return {"input_ids": input_encoding["input_ids"], "attention_mask": input_encoding["attention_mask"],

"labels": target_encoding["input_ids"], "decoder_attention_mask": target_encoding["attention_mask"]}

Поделиться:
Популярные книги

Душелов. Том 4

Faded Emory
4. Внутренние демоны
Фантастика:
юмористическая фантастика
ранобэ
фэнтези
фантастика: прочее
хентай
эпическая фантастика
5.00
рейтинг книги
Душелов. Том 4

На границе империй. Том 9. Часть 3

INDIGO
16. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 3

Болтливый мертвец

Фрай Макс
7. Лабиринты Ехо
Фантастика:
фэнтези
9.41
рейтинг книги
Болтливый мертвец

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Двойня для босса. Стерильные чувства

Лесневская Вероника
Любовные романы:
современные любовные романы
6.90
рейтинг книги
Двойня для босса. Стерильные чувства

Отверженный IX: Большой проигрыш

Опсокополос Алексис
9. Отверженный
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Отверженный IX: Большой проигрыш

Возвышение Меркурия. Книга 12

Кронос Александр
12. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 12

Жена проклятого некроманта

Рахманова Диана
Фантастика:
фэнтези
6.60
рейтинг книги
Жена проклятого некроманта

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Ученик

Первухин Андрей Евгеньевич
1. Ученик
Фантастика:
фэнтези
6.20
рейтинг книги
Ученик

Внебрачный сын Миллиардера

Громова Арина
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Внебрачный сын Миллиардера

Хозяйка Проклятой Пустоши. Книга 2

Белецкая Наталья
2. Хозяйка Проклятой Пустоши
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка Проклятой Пустоши. Книга 2

Имя нам Легион. Том 7

Дорничев Дмитрий
7. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 7

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок