Чтение онлайн

на главную - закладки

Жанры

Искусственный интеллект. Машинное обучение
Шрифт:

Рассмотрим пример кода на Python, который реализует это:

```python

from sklearn.svm import OneClassSVM

import numpy as np

# Пример данных о пульсе пациентов (удалены аномальные значения)

pulse_data = np.array([65, 68, 70, 72, 75, 78, 80, 82, 85, 88, 90, 92, 95])

# Добавим аномальные значения

anomalies = np.array([40, 100])

pulse_data_with_anomalies = np.concatenate((pulse_data, anomalies))

# Преобразуем данные в столбец (необходимо для scikit-learn)

pulse_data_with_anomalies = pulse_data_with_anomalies.reshape(-1, 1)

#

Создаем модель One-Class SVM

model = OneClassSVM(nu=0.05) # nu – ожидаемая доля аномалий в данных

# Обучаем модель

model.fit(pulse_data_with_anomalies)

# Предсказываем аномалии

anomaly_predictions = model.predict(pulse_data_with_anomalies)

# Выводим индексы аномальных значений

anomaly_indices = np.where(anomaly_predictions == -1)[0]

print("Индексы аномальных значений пульса:", anomaly_indices)

```

В этом примере мы сначала создаем набор данных о пульсе пациентов, затем добавляем в него несколько аномальных значений (40 и 100, что предполагает необычно низкий и высокий пульс соответственно). Затем мы используем One-Class SVM для обнаружения аномалий в данных о пульсе. После обучения модели мы предсказываем аномалии и выводим индексы аномальных значений.

Этот пример демонстрирует, как можно использовать алгоритм One-Class SVM для выявления аномалий в медицинских данных о пульсе пациентов. Подобные методы могут быть полезны для выявления потенциальных проблем здоровья или нештатных ситуаций в медицинских данных.

Давайте представим сценарий, связанный с мониторингом сетевой активности компьютерной сети. Предположим, у нас есть набор данных, содержащий информацию о сетевом трафике, и мы хотим выявить аномальную активность, которая может указывать на попытки вторжения или другие сетевые атаки.

В этом примере мы будем использовать библиотеку PyOD, которая предоставляет реализации различных алгоритмов для обнаружения аномалий в данных.

Допустим, у нас есть следующий набор данных `network_traffic.csv`, содержащий информацию о сетевой активности:

```

timestamp,source_ip,destination_ip,bytes_transferred

2023-01-01 08:00:00,192.168.1.100,8.8.8.8,1000

2023-01-01 08:01:00,192.168.1.101,8.8.8.8,2000

2023-01-01 08:02:00,192.168.1.102,8.8.8.8,1500

```

Давайте рассмотрим пример кода на Python для обнаружения аномалий в этом наборе данных с использованием одного из алгоритмов PyOD, например, Isolation Forest:

```python

import pandas as pd

from pyod.models.iforest import IForest

# Загрузка данных

data = pd.read_csv('network_traffic.csv')

# Извлечение признаков (в данном примере будем использовать только количество переданных байт)

X = data[['bytes_transferred']]

# Создание модели Isolation Forest

model = IForest(contamination=0.1) # Ожидаемая доля аномалий в данных

# Обучение модели

model.fit(X)

#

Предсказание аномалий

anomaly_scores = model.decision_function(X)

anomaly_labels = model.predict(X)

# Вывод аномальных наблюдений

anomalies = data[anomaly_labels == 1] # Отфильтровываем только аномальные наблюдения

print("Аномальные наблюдения:")

print(anomalies)

```

В этом примере мы загружаем данные о сетевом трафике, извлекаем необходимые признаки (в данном случае, количество переданных байт), создаем модель Isolation Forest с ожидаемой долей аномалий в данных 0.1, обучаем модель на данных и используем ее для выявления аномалий. После этого мы выводим аномальные наблюдения.

Так использование алгоритмов машинного обучения для выявления аномалий позволяет эффективно обрабатывать сложные и большие наборы данных, а также выявлять аномалии, которые могли бы быть упущены при использовании традиционных методов. Однако необходимо помнить, что выбор подходящего алгоритма и настройка параметров может зависеть от конкретной задачи и характеристик данных.

– Экспертные оценки

Выявление аномалий на основе экспертных оценок является важным и распространенным подходом, особенно в областях, где данные могут быть сложными для анализа с использованием автоматических методов, или когда у нас есть доступ к знаниям отраслевых экспертов.

Эксперты могут иметь ценные знания о характеристиках и особенностях данных в своей области, а также о типичных паттернах и аномалиях. Их оценки и предварительные догадки могут быть использованы для идентификации потенциальных аномалий в данных, которые затем могут быть дополнительно проверены и подтверждены с использованием автоматических методов или дополнительного анализа.

Например, в медицинской сфере врачи и специалисты могут обладать экспертными знаниями о нормальных и аномальных показателях в различных медицинских тестах или измерениях. Они могут помочь идентифицировать аномальные результаты, которые могут указывать на потенциальные проблемы здоровья или требуют дополнительного внимания.

Такой подход к выявлению аномалий может быть особенно полезен в ситуациях, когда данные имеют сложную структуру или когда аномалии могут иметь специфические характеристики, которые трудно обнаружить с использованием автоматических методов. Он также может дополнять автоматические методы, помогая сосредоточить внимание на наиболее важных областях данных и предотвращая ложные срабатывания.

– Примеры применения

Применение методов выявления аномалий и выбросов имеет широкий спектр применений в различных областях, включая финансы, медицину, обнаружение мошенничества, промышленность и многое другое. Эти методы играют ключевую роль в обработке данных и анализе, помогая выявить аномальные или необычные паттерны, которые могут указывать на важные события или проблемы.

Поделиться:
Популярные книги

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3

Здравствуйте, я ваша ведьма! Трилогия

Андрианова Татьяна
Здравствуйте, я ваша ведьма!
Фантастика:
юмористическая фантастика
8.78
рейтинг книги
Здравствуйте, я ваша ведьма! Трилогия

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Мастер 8

Чащин Валерий
8. Мастер
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Мастер 8

Наследник павшего дома. Том II

Вайс Александр
2. Расколотый мир [Вайс]
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том II

Пышка и Герцог

Ордина Ирина
Фантастика:
юмористическое фэнтези
историческое фэнтези
фэнтези
5.00
рейтинг книги
Пышка и Герцог

Измена. Он все еще любит!

Скай Рин
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Измена. Он все еще любит!

Ищу жену с прицепом

Рам Янка
2. Спасатели
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Ищу жену с прицепом

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

Медиум

Злобин Михаил
1. О чем молчат могилы
Фантастика:
фэнтези
7.90
рейтинг книги
Медиум

Чужая семья генерала драконов

Лунёва Мария
6. Генералы драконов
Фантастика:
фэнтези
5.00
рейтинг книги
Чужая семья генерала драконов

Отчий дом. Семейная хроника

Чириков Евгений Николаевич
Проза:
классическая проза
5.00
рейтинг книги
Отчий дом. Семейная хроника

Я не Монте-Кристо

Тоцка Тала
Любовные романы:
современные любовные романы
5.57
рейтинг книги
Я не Монте-Кристо