Чтение онлайн

на главную - закладки

Жанры

Искусственный интеллект. Основные понятия
Шрифт:

print("Кратчайший путь от", start, "к", end, ":", shortest_path)

# Создание графа и добавление вершин

G = nx.Graph

for node in road_network:

G.add_node(node)

# Добавление ребер между вершинами

for node, neighbors in road_network.items:

for neighbor in neighbors:

G.add_edge(node, neighbor)

# Отображение графа

pos = nx.spring_layout(G) # Положение вершин на графе

nx.draw(G, pos, with_labels=True, node_color='lightblue', node_size=1000)

# Выделение кратчайшего пути

shortest_path_edges = [(shortest_path[i], shortest_path[i + 1]) for i in range(len(shortest_path) – 1)]

nx.draw_networkx_edges(G, pos, edgelist=shortest_path_edges, width=2, edge_color='red')

plt.title('Граф

дорожной сети с кратчайшим путем от {} к {}'.format(start, end))

plt.show

```

Этот код создает граф дорожной сети на основе словаря смежности, а затем использует алгоритм BFS для поиска кратчайшего пути от начальной до конечной точки. Результат отображается с помощью библиотеки `matplotlib`. Визуализируется весь граф, а кратчайший путь отображается красным цветом.

Эти примеры демонстрируют, как каждый из методов поиска может быть использован для решения различных задач. DFS подходит для задач, где важно найти любой возможный путь, в то время как BFS используется, когда необходимо найти кратчайший путь или оптимальное решение.

Оба этих метода имеют свои преимущества и недостатки, и выбор конкретного метода зависит от характеристик задачи и требуемых критериев оптимальности. Кроме того, существуют и другие методы поиска, такие как алгоритмы A* и Dijkstra, которые также находят широкое применение в различных областях искусственного интеллекта и информатики.

Оптимизация

Оптимизационные методы в искусственном интеллекте играют ключевую роль в нахождении наилучших решений для сложных задач с определенными ограничениями или целями. Эти методы могут быть применены как к задачам однокритериальной оптимизации, где требуется найти оптимальное решение для одного критерия, так и к многокритериальной оптимизации, где необходимо учитывать несколько конфликтующих целей или ограничений одновременно.

Генетические алгоритмы (ГА) представляют собой мощный класс оптимизационных методов, вдохновленных принципами естественного отбора и генетики. Они являются итеративными алгоритмами, которые эмулируют эволюцию популяции, где каждый кандидат представляет потенциальное решение задачи. На каждой итерации алгоритма создается новое поколение кандидатов путем применения операторов мутации, скрещивания и отбора к родительской популяции.

В начале работы ГА создает случайную популяцию кандидатов, которая представляет собой начальные решения задачи. Затем происходит итеративный процесс, на каждом этапе которого осуществляется оценка приспособленности каждого кандидата в соответствии с целевой функцией. Кандидаты, которые лучше соответствуют поставленным критериям, имеют больший шанс выживания и передачи своих генетических характеристик следующему поколению.

Оператор мутации случайным образом изменяет генетическое представление кандидата, что приводит к разнообразию в популяции и предотвращает застревание в локальных оптимумах. Скрещивание позволяет создавать новых кандидатов путем комбинации генетической информации от двух родителей, что позволяет наследовать лучшие характеристики обоих. Оператор отбора определяет, какие кандидаты будут переходить в следующее поколение на основе их приспособленности, при этом более приспособленные кандидаты имеют больший шанс быть выбранными.

Этот процесс продолжается до достижения условия останова, такого

как достижение максимального количества итераций или достижение желаемого уровня приспособленности в популяции. Генетические алгоритмы широко применяются в различных областях, таких как оптимизация функций, настройка параметров моделей, решение задач комбинаторной оптимизации и многие другие.

Допустим, у нас есть задача оптимизации раскроя материала. Для простоты представим, что у нас есть прямоугольный лист материала определенного размера, и нам необходимо распилить его на прямоугольные заготовки определенных размеров таким образом, чтобы использовать материал максимально эффективно и минимизировать отходы.

Для решения этой задачи мы можем применить генетический алгоритм. Каждый кандидат в популяции представляет собой набор прямоугольных заготовок, расположенных на листе материала. Мы можем использовать операторы мутации и скрещивания для создания новых комбинаций заготовок, а также оператор отбора для выбора лучших решений.

Целевая функция может оценивать эффективность каждого раскроя, например, как отношение площади заготовок к общей площади листа материала. Генетический алгоритм будет итеративно искать комбинации заготовок, которые максимизируют данную целевую функцию, тем самым находя оптимальное решение для задачи раскроя материала.

Для визуализации задачи оптимизации раскроя материала с помощью генетического алгоритма мы можем использовать библиотеку `matplotlib` для создания графического представления листа материала и заготовок. Ниже приведен пример простого кода на Python, демонстрирующего эту задачу:

```python

import matplotlib.pyplot as plt

import numpy as np

# Функция для визуализации раскроя материала

def visualize_cutting(material_size, cut_pieces):

fig, ax = plt.subplots

ax.set_aspect('equal')

# Визуализация листа материала

ax.add_patch(plt.Rectangle((0, 0), material_size[0], material_size[1], linewidth=1, edgecolor='black', facecolor='none'))

# Визуализация каждой заготовки

for piece in cut_pieces:

ax.add_patch(plt.Rectangle((piece[0], piece[1]), piece[2], piece[3], linewidth=1, edgecolor='red', facecolor='none'))

plt.xlim(0, material_size[0])

plt.ylim(0, material_size[1])

plt.gca.set_aspect('equal', adjustable='box')

plt.xlabel('Width')

plt.ylabel('Height')

plt.title('Material Cutting Optimization')

plt.grid(True)

plt.show

# Пример использования функции для визуализации

material_size = (10, 10) # Размеры листа материала

cut_pieces = [(1, 1, 3, 2), (5, 2, 4, 3), (2, 6, 2, 2)] # Координаты и размеры заготовок

visualize_cutting(material_size, cut_pieces)

```

На результате видим визуализацию листа материала и расположенных на нем заготовок. Лист материала представлен черным прямоугольником, который указывает на границы доступного пространства для раскроя. Каждая заготовка представлена красным прямоугольником с указанием ее координат и размеров на листе материала. Эта визуализация помогает наглядно представить, каким образом происходит раскрой материала и как заготовки размещаются на листе с учетом ограничений.

Поделиться:
Популярные книги

Девятый

Каменистый Артем
1. Девятый
Фантастика:
боевая фантастика
попаданцы
9.15
рейтинг книги
Девятый

Цеховик. Книга 2. Движение к цели

Ромов Дмитрий
2. Цеховик
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Цеховик. Книга 2. Движение к цели

На границе империй. Том 10. Часть 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 3

Жена неверного маршала, или Пиццерия попаданки

Удалова Юлия
Любовные романы:
любовно-фантастические романы
4.25
рейтинг книги
Жена неверного маршала, или Пиццерия попаданки

Надуй щеки! Том 2

Вишневский Сергей Викторович
2. Чеболь за партой
Фантастика:
попаданцы
дорама
фантастика: прочее
5.00
рейтинг книги
Надуй щеки! Том 2

Жена на пробу, или Хозяйка проклятого замка

Васина Илана
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Жена на пробу, или Хозяйка проклятого замка

Попаданка для Дракона, или Жена любой ценой

Герр Ольга
Любовные романы:
любовно-фантастические романы
7.17
рейтинг книги
Попаданка для Дракона, или Жена любой ценой

Ни слова, господин министр!

Варварова Наталья
1. Директрисы
Фантастика:
фэнтези
5.00
рейтинг книги
Ни слова, господин министр!

По дороге на Оюту

Лунёва Мария
Фантастика:
космическая фантастика
8.67
рейтинг книги
По дороге на Оюту

(Не) моя ДНК

Рымарь Диана
6. Сапфировые истории
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
(Не) моя ДНК

Газлайтер. Том 17

Володин Григорий Григорьевич
17. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 17

Адвокат вольного города 3

Кулабухов Тимофей
3. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 3

Шлейф сандала

Лерн Анна
Фантастика:
фэнтези
6.00
рейтинг книги
Шлейф сандала

Беглец

Бубела Олег Николаевич
1. Совсем не герой
Фантастика:
фэнтези
попаданцы
8.94
рейтинг книги
Беглец