Искусство цвета. Цветоведение: теория цветового пространства
Шрифт:
В среде, наполненной весомой материей, скорость света не только меньше, чем в безвоздушном пространстве, но и зависит еще от числа колебаний; замедление увеличивается с увеличением числа колебаний. Вот почему луч света, состоящий из различных длин волн, теряет, при переходе из одной среды в другую, свое единство: каждый сорт световых волн принимает в таком случае свое особое направление, соответствующее числу его колебаний. Это – наилучший и самый простой способ для отделения друг от друга различных сортов света. Открытие его принадлежит Ньютону.
Светорассеяние (дисперсия) всегда связано с преломлением света, и так как лучам различной частоты колебаний соответствуют различные цвета, оно служит причиной образования
Светорассеяние бывает различным по своей величине, в зависимости от того, насколько отношение скоростей различных длин волн в данной среде удаляется от единицы. Дисперсия света в общем увеличивается с преломлением, но помимо этого она зависит еще и от химической природы среды. Стекла, которые содержат бор и фтор, дают поразительную слабую дисперсию, содержащие же свинец и таллий – необычайно сильную. Эти особенности, для чисто практических целей, основательно изучены, и теперь мы имеем возможность изготовлять стекла любой рассеивающей силы.
Для анализа данного света посредством дисперсии употребляют призму, т. е. стекло, ограниченное двумя наклонными друг к другу плоскостями. Когда мы смотрим сквозь такое стекло на источник света, то он кажется нам сдвинутым со своего места и, в зависимости от числа колебаний, на равный угол. Всегда бывает видно через призму такое количество разноцветных изображений, сколько различных чисел колебаний имеется в данном свете. Большею частью мы имеем, в известных пределах, всевозможные числа колебаний. Изображение непрерывно переходит одно в другое, а все вместе располагаются в виде многоцветной полосы, в которой все цвета размещаются согласно числу соответствующих им колебаний.
Для того чтобы изображения возможно меньше покрывали друг друга, источнику света дают форму полосы, помещая его перед узкой щелью – так, чтобы она была параллельна линии пересечения двух поверхностей призмы. Проще всего это достигается тем, что перед источником света помещается щель, пропускающая лишь узкую полоску.
Изображение, которое мы получаем таким образом, называется спектром, а прибор, состоящий из призмы и щели, – спектроскопом. Для удобства наблюдения и большей его точности спектроскоп содержит еще целый ряд стеклянных чечевиц, которые в основном явлении ничего существенного не меняют. Призму лучше всего поставить таким образом, чтобы средние лучи имели прямолинейное направление – тогда легче направить спектроскоп на источник света. Наконец для многих целей очень желательно иметь в поле зрения также шкалу, на которой можно видеть числа колебаний (или длины волн). Все эти приспособления имеются у спектроскопов новейшей конструкции.
Согласно закону преломления света, каждый луч может вступить под каким угодно углом из одной среды в другую, если только скорость его в этой среде уменьшается (т. е. среда оптически более плотна); в противном случае дело обстоит иначе. Тут существует предел, когда синус угла преломления равняется единице, а сам угол, следовательно, становится прямым; при дальнейшем увеличении угла падения – преломление становится уже невозможным и все количество падающего света отражается. Это есть явление полного отражения, очень важное, между прочим, и для понимания образа действия кроющих красящих веществ.
Часть света, попадающая в другую среду, превращается в другие виды энергии, преимущественно в тепловую, и поэтому первоначальное количество света постепенно уменьшается: Законом этого процесса – поглощения – является то, что каждую единицу своего пути данный свет проходит не полностью, а только определенной долей своего предыдущего количества. Эта доля, т. е. та часть света, которая проходит через новую среду,
Если коэффициент прозрачности для длины пути, равной одному сантиметру, обозначит буквой d, то при длине пути, равной n сантиметрам, он выразится, как dn, поглощение же будет выражаться формулой:
1 – dn.
Это есть математическое выражение вышеизложенного закона; d есть функция дайны волны, но не силы света.
Поглощение света в большой степени зависит от химической природы вещества. Здесь идет речь о конститутивных особенностях вещества. Элементы, валентность которых меняется при вступлении их в реакции с другими элементами, имеют во всех таких случаях разную поглощательную способность, хотя в простых соединениях она нередко одинакова или подобна. Более сложные и комплексные соединения проявляют уже иную лучепоглощаемость. Необыкновенно разнообразна поглощательная способность у ароматического ряда углеродистых соединений, если они содержат еще при этом азот и другие элементы. На этом и зиждется богатая и особенно ценная промышленность – добывание красящих веществ из продуктов коксования угля.
Поглощение зависит далее от состояния вещества. В то время как в газах часто наблюдаются узкие полосы поглощения, дающие линейчатый спектр, у жидкостей и растворов таковые очень редки. У жидких тел поглощение распространяется на большие части спектра, в границах которых оно непрерывно несколько меняется. К концам этих областей коэффициент прозрачности увеличивается и приближается к единице. Линейчатые спектры заменяются здесь спектрами, имеющими более широкие полосы поглощения с размытыми границами. Еще более равномерно и непрерывно распределяются области поглощения у твердых тел. Узкие линии поглощения очень редки, широкие, размытые полосы являются правилом. Эти факты имеют основное значение для биологического развития нашего цветного зрения, как уже и было указано нами выше. Дальше, при изложении учения о цветовом полукруге, будут изложены и правила, которые, сообразно с этим, определяют наше видение цветов.
Все цвета окружающих нас тел обусловливаются вышеизложенными явлениями. Прозрачные тела мы видим благодаря тем лучам света, которые, вследствие их частичного отражения с их поверхности, попадают в наш глаз. Когда разница в степени преломления (по сравнению с воздухом) мала, как, например, у различных газов, то такие тела не доступны нашему зрению. Если имеется частичное поглощение, то тела видятся нами как прозрачные цветные, как, например, цветные стекла, вода, многие драгоценные камни и т. д.
Если тело состоит из множества маленьких частиц с различными показателями преломления, то свет не может там проложить себе длинного прямого пути. Поэтому они не прозрачны. Если при этом нет заметного поглощения, то свет рассеивается и отражается; такие тела нам кажутся белыми.
Чаще всего в этом случае одной из составных частей такой смеси является воздух. При рассмотрении белых тканей под микроскопом мы видим прозрачные волокна, при рассмотрении белых порошков мы видим прозрачные кристаллики или частицы таковых; как те, так и другие заключают в промежутках между собой воздух. То же наблюдается и у всех других белых тел. Особенно характерно это для таких белых красящих веществ, как свинцовые белила, цинковые белила, мел и т. д. которые состоят из прозрачных, мелких, сильно преломляющих зернышек. Они кроют тем лучше, чем больше их преломляющая способность.