Чтение онлайн

на главную - закладки

Жанры

Искусство схемотехники. Том 1 (Изд.4-е)
Шрифт:

Рис. 3.57.

Ситуация напоминает однокаскадный эмиттерный повторитель из разд. 2.15, в котором потребляемая мощность в состоянии покоя и мощность, направляемая в нагрузку выбираются из тех же компромиссных соображений. Решение здесь одно — использование пушпульной схемы, особенно хорошо подходящей для переключателей на МОП-транзисторах.

Взгляните на рис. 3.58; здесь показано, как можно было бы организовать пушпульный (двухтактный) ключ.

Рис. 3.58. Логический

КМОП-инвертор.

Потенциал земли на входе вводит нижний транзистор в состояние отсечки, а верхний — во включенное (замкнутое) состояние, в результате чего на выходе будет высокий логический уровень. Высокий (+UСС) уровень входа действует противоположным образом, давая на выходе потенциал земли. Это инвертор с низким выходным сопротивлением в обоих состояниях и в нем совершенно отсутствует ток покоя. Называют его КМОП-инвертор (инвертор на комплементарных МОП-транзисторах), и он является базовой структурой для всех цифровых логических КМОП-схем — семейства, которое уже стало преобладающим в больших интегральных схемах (БИС) и которому, похоже, предопределено заменить более ранние семейства логических схем (так называемые ТТЛ-схемы), построенные на биполярных транзисторах. Обратите внимание на то, что КМОП-инвертор представляет собой два комплементарных МОП-ключа, соединенных последовательно и включаемых попеременно, в то время как аналоговый КМОП-ключ (рассмотренный ранее в этой главе) — это параллельно соединенные комплементарные МОП-ключи, включаемые и выключаемые одновременно.

Упражнение 3.14. Комплементарные МОП-транзисторы в КМОП-инверторе оба работают как инверторы с общим истоком, тогда как комплементарные биполярные транзисторы в пушпульных схемах разд. 2.15 являются (неинвертирующими) эмиттерными повторителями. Попробуйте нарисовать «комплементарный биполярный инвертор», аналогичный КМОП-инвертору. Почему он не сможет работать?

О цифровых КМОП-схемах гораздо больше будет сказано там, где будут рассматриваться цифровые логические схемы и микропроцессоры (гл. 8-11). На сей момент остановимся на очевидном: КМОП-схемы — это семейство маломощных логических схем (с нулевым потреблением мощности в состоянии покоя), имеющих высокое полное входное сопротивление и жестко заданные уровни выходного напряжения, соответствующие полному диапазону напряжений питания. Однако прежде чем оставить сей предмет, мы не можем устоять против соблазна показать еще одну КМОП-схему (рис. 3.59). Это логический вентиль И-НЕ, на выходе которого будет низкий логический уровень только в том случае, если на обоих входах — на входе А и на входе В — будет высокий уровень. Понять, как он работает, исключительно просто.

Рис. 3.59. вентили И-НЕ и И.

Если уровни А и В — оба высокие, то оба последовательно включенные n– канальные МОП-ключи Т1 и Т2 находятся в проводящем состоянии, жестко фиксируя на выходе потенциал земли; p– канальные ключи Т3 и Т4 оба разомкнуты, так что ток через них не течет. Однако если уровень на любом из входов А или В (или на обоих) низкий, то соответствующий p– канальный МОП-транзистор открыт, подавая на выход высокий уровень, так как один (или оба) транзистор последовательной цепи Т1Т2 закрыт и ток через них не проходит.

Схема называется вентилем И-НЕ, поскольку она осуществляет логическую функцию И, но с инверсным (НЕ) выходом. Хотя вентили и их варианты — предмет рассмотрения гл. 8, вы можете доставить себе удовольствие, попытавшись набить руку на решении следующих проблем.

Упражнение 3.15. Нарисуйте КМОП-вентиль И. Подсказка: И = НЕ-И-НЕ.

Упражнение 3.16. Теперь нарисуйте схему вентиля ИЛИ-НЕ. На выходе этой схемы низкий уровень, если на любом из входов А или В (или на обоих) уровень высокий.

Упражнение 3.17.

Небольшая загадка — как будет выглядеть КМОП-вентиль ИЛИ?

Упражнение 3.18. Нарисуйте 3-входовый КМОП-вентиль И-НЕ.

Цифровые логические КМОП-схемы, которые мы будем рассматривать позже, строятся путем комбинирования этих базовых вентилей. Сочетание очень малой потребляемой мощности и жестко заданного выходного напряжения, привязанного к шинам питания, делает выбор семейства логических схем на КМОП-транзисторах предпочтительным для большинства цифровых схем, что и объясняет их популярность. Кроме того, для микромощных схем (таких как наручные часы и малые измерительные приборы с батарейным питанием) это вообще единственное решение. Однако, если мы не хотим впасть в заблуждение, стоит отметить, что мощность, потребляемая КМОП-логикой, хотя и очень мала, но не равна нулю.

Существуют два механизма, вызывающие появление тока стока. Во время переходных процессов через выход КМОП-схемы должен проходить кратковременный ток I = CdU/dt, чтобы зарядить имеющуюся на выходе емкость той или иной величины (рис. 3.60).

Рис. 3.60. Емкостной зарядный ток.

Емкость нагрузки образуется как за счет емкости проводников («паразитная» емкость), так и за счет входной емкости дополнительной логической схемы, подключенной к выходу. Фактически, поскольку сложный чип на комплементарных МОП-транзисторах содержит много вентилей, каждый из которых нагружен на некоторую внутреннюю емкость, в любой КМОП-схеме имеется некоторый ток стока, который участвует в переходных процессах, даже если сам чип не подключен ни к какой нагрузке. Неудивительно, что этот «динамический» ток стока пропорционален скорости, с которой происходит этот переходный процесс. Второй механизм появления тока стока в КМОП-схеме показан на рис. 3.61.

Рис. 3.61. Проводимость в КМОП-схеме в режиме класса А.

При переходе напряжения на входе скачком от потенциала земли к уровню напряжения питания и обратно существует область, в которой оба МОП-транзистора находятся в состоянии проводимости, в результате чего возникает всплеск тока от UСС на землю. Его иногда называют «ток класса А» или «ломовой ток питания». Некоторые следствия, которые он вызывает, вы увидите в гл. 8, 9 и 14. Коль скоро мы сделали ставку на КМОП-схемы, нужно отметить и другой их недостаток (фактически, он присущ всем МОП-транзисторам) — это незащищенность от повреждения статическим электричеством. Дополнительно мы поговорим об этом в разд. 3.15.

Линейный усилитель на КМОП-транзисторах. КМОП-инверторы, как впрочем и все цифровые логические схемы, предназначены для работы с цифровыми логическими уровнями сигналов. Поэтому, за исключением времени переходных процессов, входы и выходы подключены к земле или к шине UСС (обычно +5 В). И опять-таки за исключением времени, которое длятся эти переходные процессы (типичная величина - несколько наносекунд), здесь нет тока стока в состоянии покоя. Оказывается, КМОП-инвертор обладает некоторыми интересными свойствами, когда он работает с аналоговыми сигналами. Взгляните снова на рис. 3.61.

Можно рассматривать Т1 как активную (источник тока) нагрузку для инвертирующего усилителя Т2, и наоборот. Когда на входе потенциал, близкий к UСС или к потенциалу земли, токи указанных транзисторов сильнейшим образом отличаются друг от друга и усилитель находится в насыщении (или в «прижатом» соответственно к земле или UСС состоянии). Это, разумеется, нормальная ситуация для цифровых сигналов. Однако когда напряжение на входе равно приблизительно половине напряжения питания, есть небольшая область, где токи стоков Т1 и Т2 примерно одинаковы; в этой области схема является инвертирующим линейным усилителем с большим коэффициентом усиления. Его передаточная характеристика представлена на рис. 3.62.

Поделиться:
Популярные книги

Император поневоле

Распопов Дмитрий Викторович
6. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Император поневоле

Отверженный VI: Эльфийский Петербург

Опсокополос Алексис
6. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Отверженный VI: Эльфийский Петербург

Адвокат Империи 2

Карелин Сергей Витальевич
2. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 2

Инвестиго, из медика в маги

Рэд Илья
1. Инвестиго
Фантастика:
фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Инвестиго, из медика в маги

Попаданка для Дракона, или Жена любой ценой

Герр Ольга
Любовные романы:
любовно-фантастические романы
7.17
рейтинг книги
Попаданка для Дракона, или Жена любой ценой

Господин следователь. Книга 4

Шалашов Евгений Васильевич
4. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь. Книга 4

Измена. Тайный наследник. Том 2

Лаврова Алиса
2. Тайный наследник
Фантастика:
фэнтези
5.00
рейтинг книги
Измена. Тайный наследник. Том 2

Тайны затерянных звезд. Том 2

Лекс Эл
2. Тайны затерянных звезд
Фантастика:
боевая фантастика
космическая фантастика
космоопера
фэнтези
5.00
рейтинг книги
Тайны затерянных звезд. Том 2

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Прометей: владыка моря

Рави Ивар
5. Прометей
Фантастика:
фэнтези
5.97
рейтинг книги
Прометей: владыка моря

Законник Российской Империи. Том 4

Ткачев Андрей Юрьевич
4. Словом и делом
Фантастика:
городское фэнтези
альтернативная история
аниме
дорама
5.00
рейтинг книги
Законник Российской Империи. Том 4

Сын Тишайшего

Яманов Александр
1. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.20
рейтинг книги
Сын Тишайшего

Прометей: каменный век

Рави Ивар
1. Прометей
Фантастика:
альтернативная история
6.82
рейтинг книги
Прометей: каменный век

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х