Чтение онлайн

на главную - закладки

Жанры

Искусство схемотехники. Том 1 (Изд.4-е)
Шрифт:

Рис. 4.2. Интегральная схема в корпусе мини-DIP с двухрядным расположением выводов.

Эта схема недорога и удобна в обращении; промышленность выпускает улучшенный вариант этой схемы (LF411A), а также элемент, размещенный в миниатюрном корпусе и содержащий два независимых операционных усилителя (схема типа LF412, которую называют также «сдвоенный» операционный усилитель). В дальнейшем в этой главе мы будем использовать схему типа LF411 как стандарт операционного усилителя, мы

также рекомендуем вам эту схему в качестве хорошей начальной ступени в разработке электронных схем.

Схема типа 411 — это кристалл кремния, содержащий 24 транзистора (21 биполярный транзистор, 3 полевых транзистора, 11 резисторов и 1 конденсатор). На рис. 4.3 показано соединение с выводами корпуса. Точка на крышке корпуса и выемка на его торце служат для обозначения точки отсчета при нумерации выводов.

Рис. 4.3.

В большинстве корпусов электронных схем нумерация выводов осуществляется в направлении против часовой стрелки со стороны крышки корпуса. Выводы «установка нуля» (или «баланс», «регулировка») служат для устранения небольшой асимметрии, возможно в операционном усилителе. Речь об этом пойдет позже в этой главе.

4.03. Важнейшие правила

Сейчас мы познакомимся с важнейшими правилами, которые определяют поведение операционного усилителя, охваченного петлей обратной связи. Они справедливы почти для всех случаев жизни. Во-первых, операционный усилитель обладает таким большим коэффициентом усиления по напряжению, что изменение напряжения между входами на несколько долей милливольта вызывает изменение выходного напряжения в пределах его полного диапазона, поэтому не будем рассматривать это небольшое напряжение, а сформулируем правило I:

I. Выход операционного усилителя стремится к тому, чтобы разность напряжений между его входами была равна нулю.

Во-вторых, операционный усилитель потребляет очень небольшой входной ток (ОУ типа LF411 потребляет 0,2 нА; ОУ со входами на полевых транзисторах — порядка пикоампер); не вдаваясь в более глубокие подробности, сформулируем правило II:

II. Входы операционного усилителя ток не потребляют.

Здесь необходимо дать пояснение: правило I не означает, что операционный усилитель действительно изменяет напряжение на своих входах. Это невозможно. (Это было бы несовместимо с правилом II.) Операционный усилитель «оценивает» состояние входов и с помощью внешней схемы ОС передает напряжение с выхода на вход, так что в результате разность напряжений между входами становится равной нулю (если это возможно). Эти правила создают достаточную основу для рассмотрения схем на операционных усилителях. О предосторожностях, которые необходимо соблюдать при работе с ОУ, мы поговорим в разд. 4.08, после того как рассмотрим основные схемы включения ОУ.

Основные схемы включения операционных усилителей

4.04. Инвертирующий усилитель

Рассмотрим схему на рис. 4.4.

Рис. 4.4. Инвертирующий усилитель.

Проанализировать ее будет нетрудно, если вспомнить сформулированные выше правила:

1. Потенциал точки В равен потенциалу земли, следовательно, согласно правилу I, потенциал точки А также равен потенциалу земли.

2. Это означает, что: а) падение напряжения на резисторе R2

равно Uвых, б) падение напряжения не резисторе R1 равно Uвх.

3. Воспользовавшись теперь правилом II, получим Uвых/R2 = — Uвх/R1 или коэффициент усиления по напряжению = Uвых/Uвх = — R2/R1. Позже вы узнаете, что чаще всего точку В лучше заземлять не непосредственно, а через резистор. Однако сейчас это не имеет для вас значения.

Итак, анализ схемы на ОУ оказался даже чересчур простым. Он, правда, не позволяет судить о том, что на самом деле происходит в схеме. Для того чтобы понять, как работает обратная связь, представим себе, что на вход подан некоторый уровень напряжения, скажем 1 В.

Для конкретизации допустим, что резистор R1 имеет сопротивление 10 кОм, а резистор R2 — 100 кОм. Теперь представим себе, что напряжение на выходе решило выйти из повиновения и стало равно 0 В.

Что произойдет? Резисторы R1 и R2 образуют делитель напряжения, с помощью которого потенциал инвертирующего входа поддерживается равным 0,91 В. Операционный усилитель фиксирует рассогласование по входам, и напряжение на его выходе начинает уменьшаться. Изменение продолжается до тех пор, пока выходное напряжение не достигнет значения —10 В, в этот момент потенциалы входов ОУ станут одинаковыми и равными потенциалу земли. Аналогично, если напряжение на выходе начнет уменьшаться и дальше и станет более отрицательным, чем —10 В, то потенциал на инвертирующем входе станет ниже потенциала земли, в результате выходное напряжение начнет расти.

Как определить входной импеданс рассматриваемой схемы? Оказывается, просто. Потенциал точки А всегда равен 0 В (так называемое мнимое заземление, или квазинуль сигнала). Следовательно, Zвх = R1. Пока вы еще не знаете, как подсчитать выходной импеданс; для этой схемы он равен нескольким долям ома.

Следует отметить, что полученные результаты справедливы и для сигналов постоянного тока — схема представляет собой усилитель постоянного тока. Поэтому, если источник сигнала смещен относительно земли (источником является, например, коллектор предыдущего каскада), у вас может возникнуть желание использовать для связи каскадов конденсатор (иногда такой конденсатор называют блокирующим, так как он блокирует сигнал постоянного тока, а передает сигнал переменного тока). Немного позже (когда речь пойдет об отклонениях характеристик ОУ от идеальных), вы узнаете, что в тех случаях, когда интерес представляют только сигналы переменного тока, вполне допустимо использовать блокирующие конденсаторы.

Схема, которую мы рассматриваем, называется инвертирующим усилителем. Недостаток этой схемы состоит в том, что она обладает малым входным импедансом, особенно для усилителей с большим коэффициентом усиления по напряжению (при замкнутой цепи ОС), в которых резистор R1, как правило, бывает небольшим. Этот недостаток устраняет схема, представленная на рис. 4.5.

4.05. Неинвертирующий усилитель

Поделиться:
Популярные книги

Месть за измену

Кофф Натализа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть за измену

Камень. Книга пятая

Минин Станислав
5. Камень
Фантастика:
боевая фантастика
6.43
рейтинг книги
Камень. Книга пятая

Новый Рал 8

Северный Лис
8. Рал!
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Новый Рал 8

Черный Маг Императора 15

Герда Александр
15. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
сказочная фантастика
фэнтези
фантастика: прочее
5.00
рейтинг книги
Черный Маг Императора 15

Отмороженный 9.0

Гарцевич Евгений Александрович
9. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 9.0

Ищу жену для своего мужа

Кат Зозо
Любовные романы:
любовно-фантастические романы
6.17
рейтинг книги
Ищу жену для своего мужа

Чужая семья генерала драконов

Лунёва Мария
6. Генералы драконов
Фантастика:
фэнтези
5.00
рейтинг книги
Чужая семья генерала драконов

Эволюционер из трущоб. Том 2

Панарин Антон
2. Эволюционер из трущоб
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Эволюционер из трущоб. Том 2

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

Начальник милиции. Книга 5

Дамиров Рафаэль
5. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 5

Надуй щеки! Том 5

Вишневский Сергей Викторович
5. Чеболь за партой
Фантастика:
попаданцы
дорама
7.50
рейтинг книги
Надуй щеки! Том 5

Первый среди равных. Книга V

Бор Жорж
5. Первый среди Равных
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Первый среди равных. Книга V

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Имя нам Легион. Том 7

Дорничев Дмитрий
7. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 7