Чтение онлайн

на главную - закладки

Жанры

Искусство схемотехники. Том 3 (Изд.4-е)
Шрифт:

Время спада. Для анализа спада используем формулу, полученную ранее, и найдем:

Последний член зависит от UK, но он незначителен по сравнению с первым членом в скобках. Если это не так, то вам придется оценивать эту величину при нескольких значениях коллекторного напряжения, чтобы получить правильную картину формы спада. Здесь следует отметить, что рассчитанное время спада соответствует частоте около 3 МГц и, следовательно, используемая нами величина h21э = 100 вполне реальна (fT = 300

МГц).

Если рассчитанное время нарастания или время спада соответствует частоте более высокой, чем предполагалось первоначально, то необходимо вернуться и пересчитать время переходного процесса с новым h21э, полученным из первой оценки времени переключения. Этот метод последовательных приближений обычно дает удовлетворительный ответ уже на втором этапе.

Форма выходного импульса. Для этой схемы форма коллекторного сигнала соответствует приведенной на рис. 13.56.

Рис. 13.56.

На положительном фронте преобладает влияние постоянной времени ёмкости нагрузки и коллекторного сопротивления, в то время как на спаде больше сказывается ёмкость обратной связи в сочетании с сопротивлением источника. Другими словами, напряжение на коллекторе падает с такой скоростью, что ток через ёмкость обратной связи почти достаточен, чтобы подавить отпирающий ток базы и вывести базу из состояния проводимости.

В наших допущениях мы всюду считали, что фронты импульса на выходе ТТЛ много короче, чем на выходе нашей схемы. Обычно времена нарастания и спада ТТЛ равны ~ 5 нc, что соответствует нашему предположению.

13.26. Усилитель с «открытым коллектором» при работе на шину

Предположим, мы хотим организовать с помощью схем с открытым коллектором управление шиной ТТЛ с выхода nМОП-схемы. Это можно осуществить, используя n-p-n– инвертирующий каскад, как показано на рис. 13.57.

nМОП-прибор, работающий от 4–5 В (см. разд. 9.09), имеет малую нагрузочную способность, поэтому необходимо, чтобы резистор базы был велик. Для того, чтобы подчеркнуть эффекты, связанные с наличием параметров, подобных Скб, мы выбрали два очень распространенных транзистора.

Время нарастания рассчитывается по приведенной выше методике. Для линейного нарастания вследствие интегрирования имеем:

Выбор транзистора. Ситуация видна из рис. 13.58.

Рис. 13.58.

Параметры, полученные для 2N5137, полностью определяются действием емкости обратной связи, усиливающимся из-за относительно высокого сопротивления источника сигнала. Переходные процессы для 2N4124, вероятно, оценены чуть-чуть оптимистично, поскольку они соответствуют частоте около 10 МГц, при которой h21э, скорее всего, несколько ниже предполагаемого значения.

Интересно измерить время достижения напряжения порога ТТЛ (~1,3 В) как основной параметр системы с запуском вентилей ТТЛ шинными сигналами. Если не учитывать времена рассасывания и задержки, то времена достижения порогов ТТЛ будут следующие:

Времена нарастания и спада, измеренные нами, находятся в разумном согласии с предсказанными

по нашей несколько упрощенной модели, за исключением, пожалуй, лишь времени нарастания для 2N4124. Имеется несколько возможных объяснений, почему рассчитанное время нарастания в этом случае получилось слишком малым. В расчетах значение h21э бралось при 10 МГц, в то время как время нарастания 17 нс не соответствует более высоким частотам и, следовательно, более низким значениям h21э. Кроме того, практические измерения для этого транзистора дают Скб = 2,2 нФ при 10 В и Скб = 3 пФ при 2 В. Любопытно, что использовавшийся нами 2N5137 имел реально гораздо меньшее значение Скб (~5 пФ), чем указанное в паспорте, и поэтому нам пришлось добавить небольшой конденсатор в схему, чтобы «довести» Скб до «паспортной величины». Это, скорее всего, означает, что технологический процесс изменился уже после публикации данных о параметрах транзистора.

Упражнение 13.2 Проверьте результаты расчётов для dU/dt (нарастание и спад) иUк.

Снижение питания до +3 В. Заметим, что время достижения порога ТТЛ при переходе из состояния ВЫСОКОГО уровня к НИЗКОМУ гораздо больше, чем при обратном переходе, даже если скорости нарастания и спада выходного сигнала (в случае схемы на 2N4124) почти одинаковы. Это связано с тем, что пороговое напряжение ТТЛ расположено несимметрично между +5 В и землей, и поэтому коллекторное напряжение на спаде для достижения порога должно измениться на большую величину. По этой причине шины ТТЛ часто подключаются к источнику +3 В (для этого иногда используют пару последовательно соединённых диодов, подключенных к +5 В), или каждая линия шины может быть подключена к делителю напряжения, как показано на рис. 13.59.

Рис. 13.59.

Упражнение 13.3. Рассчитайте время нарастания и спада и время задержки распространения для 2N4124, управляющего описанной выше шиной с Сн = 100 пФ. Результат изобразите графически.

13.27. Пример схемы: предусилитель для фотоумножителя

В гл. 15 будут рассмотрены так называемые фотоэлектронные умножители (ФЭУ), устройства, широко используемые в качестве детекторов света, сочетающих высокую чувствительность с высоким быстродействием. Фотоумножители находят применение и там, где измеряется не собственно световое излучение, как, например, в качестве детекторов частиц высоких энергий, в которых кристалл сцинтиллятора при бомбардировке его частицами дает световые вспышки. Чтобы полностью использовать все возможности фотоумножителей, необходим зарядово-чувствительный быстродействующий дискриминатор — схема, которая генерирует выходной импульс при условии, что импульс заряда на входе превышает некоторый порог, соответствующий детектируемым световым фотонам.

На рис. 13.60 приведена схема быстродействующего предусилителя для фотоумножителя и дискриминатора, в которую входит ряд высокочастотных и переключательных устройств, обсуждаемых в этой главе.

Рис. 13.60. Быстродействующий зарядный усилитель для счета фотонов на фотоумножителе. Входная цепь должна иметь внешнюю «паразитную» емкость по крайней мере 10 пФ; для низкоемкостных входов (< 20 пФ) используют Ct = 0,5 пФ; при емкостях источника, достигающих 100 пФ, используют для С, от 1,0 до 1,5 пФ. Фотонный дискриминатор (используется для ФЭУ с высоким усилением); выход для ТТЛ: импульсы 20 нc; 50 Ом; порог 0,1–1,5 пКл, регулируемый; задержка 10 нc, разрешение двух импульсов 30 нc, 100 нc при перегрузке.

Поделиться:
Популярные книги

Довлатов. Сонный лекарь

Голд Джон
1. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь

Ворон. Осколки нас

Грин Эмилия
2. Ворон
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ворон. Осколки нас

Безумный Макс. Ротмистр Империи

Ланцов Михаил Алексеевич
2. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
4.67
рейтинг книги
Безумный Макс. Ротмистр Империи

Часовое сердце

Щерба Наталья Васильевна
2. Часодеи
Фантастика:
фэнтези
9.27
рейтинг книги
Часовое сердце

Гримуар темного лорда IX

Грехов Тимофей
9. Гримуар темного лорда
Фантастика:
попаданцы
альтернативная история
аниме
фэнтези
5.00
рейтинг книги
Гримуар темного лорда IX

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Город воров. Дороги Империи

Муравьёв Константин Николаевич
7. Пожиратель
Фантастика:
боевая фантастика
5.43
рейтинг книги
Город воров. Дороги Империи

Вонгозеро

Вагнер Яна
1. Вонгозеро
Детективы:
триллеры
9.19
рейтинг книги
Вонгозеро

Барон Дубов 4

Карелин Сергей Витальевич
4. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 4

Барон Дубов

Карелин Сергей Витальевич
1. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Ведьма Вильхельма

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
8.67
рейтинг книги
Ведьма Вильхельма