Чтение онлайн

на главную - закладки

Жанры

Истинный творец всего. Как человеческий мозг сформировал вселенную в том виде, в котором мы ее воспринимаем
Шрифт:

В первой работе об обезьянах профессор Риццолатти сообщил о существовании зеркальных нейронов только в высокоупорядоченной моторной кортикальной области, расположенной в боковой части фронтальной коры. Риццолатти называет эту зону F5, пользуясь термином из старой классификации. Большинство нейрофизиологов, изучающих кору, называют этот отдел вентральной областью премоторной коры. Однако вскоре стало ясно, что зеркальные нейроны есть не только в премоторной коре. Как указывает Стефано Роцци в обширном обзоре на эту тему, последующие исследования обезьян и человека позволили обнаружить зеркальные нейроны во многих других отделах как фронтальной, так и теменной коры, из чего следует, что данный тип двигательной активности осуществляется широко распределенной лобно-теменной сетью нейронов. В этом качестве сеть зеркальных нейронов включает в себя многие зоны коры, участвующие в движении рук, рта и глаз. Интересно, что, по данным Роцци, у певчих птиц активность зеркальных нейронов наблюдается в структурах мозга, ответственных за пение и обучение.

В целом наличие зеркальных нейронов в лобной и теменной части коры обезьян и человека и их повсеместное распределение указывают на то, что эта система играет очень важную роль в социальном взаимодействии в группах людей и животных. Это легко понять, если учесть, что электрическая активность зеркальных нейронов отражает не только подготовку и выполнение движений самим

индивидуумом, но также восприятие аналогичных движений, осуществляемых другими представителями ближайшего социального окружения или даже другими приматами (например, экспериментатора при работе с лабораторными обезьянами). Ученые обнаружили, что зеркальные нейроны также могут свидетельствовать об определенной точке зрения индивидуума, наблюдающего за движениями другого индивидуума, а также об оценке вознаграждения за это действие. В целом эти результаты позволяют предположить, что классическое определение зеркальных нейронов, возможно, не в полной мере отражает многочисленные функции, выполняемые лобно-теменными сетями этих клеток.

В практическом плане открытие зеркальных нейронов показало, что моторные области коры имеют постоянный доступ к зрительной информации. Один интересный аспект заключается в том, что зрительный сигнал достигает моторной коры разными проходящими через мозг путями. Одним из наиболее примечательных из них является путь, позволяющий зрительным сигналам из нижней височной коры (элемент зрительной системы приматов) достигать вентральной области премоторной коры в лобной доле через ретранслятор в теменной доле. Нейроны нижней височной коры реагируют, когда обезьяны или люди смотрят на сложные и тщательно изготовленные предметы. Кроме того, известно, что подгруппа этих нейронов у обезьян и человека возбуждается сильнее, когда индивидуум видит лицо другого представителя своего вида.

Просматривалась некоторая аналогия между классическими свойствами зеркальных нейронов и результатами работы По-Хе. Но было и заметное несоответствие: наши данные по регистрации активности нейронов были получены для первичной моторной коры и дорсального отдела премоторной коры лобной доли обезьян, а не для вентрального отдела премоторной коры, в котором Риццолатти впервые обнаружил эти клетки. Это несовпадение усугублялось тем, что некоторые исследования с визуализацией мозга человека вообще не выявили активности зеркальных нейронов в первичной моторной коре. Однако после внимательного ознакомления с литературными данными я обнаружил как минимум два исследования на обезьянах, в которых в первичной моторной коре животных была зафиксирована активность, напоминающая активность зеркальных нейронов. В одном из этих исследований нейрофизиологи отмечали, что большинство зеркальных нейронов усиливали степень возбуждения, когда индивидуум наблюдал за тем, как кто-то другой совершает какое-либо действие, тогда как небольшая доля зеркальных нейронов из первичной моторной коры реагировала снижением возбуждения, и это явление было также отмечено в премоторной коре. В том же исследовании было показано, что зеркальные нейроны первичной моторной коры возбуждаются намного сильнее, когда обезьяна сама выполняет действие, чем когда она наблюдает за действиями кого-то другого. Менее выраженное изменение скорости возбуждения при наблюдении за действием другого существа может объяснять, почему во многих исследованиях с визуализацией мозга человека активность зеркальных нейронов в первичной моторной коре не была зафиксирована. То, что магнитный резонанс не выявлял присутствия таких нейронов в первичной моторной коре, стало почти очевидным при использовании нового метода магнитоэнцефалографии, способного регистрировать слабые магнитные поля, производимые корой мозга. С помощью магнитоэнцефалографии исследователи без труда идентифицировали возбуждение зеркальных нейронов в первичной моторной коре человека. Интересно, что магнитоэнцефалография также показала, что хотя у детей с признаками аутизма наблюдается активность зеркальных нейронов в первичной моторной коре, эти дети, по-видимому, не используют результаты активации этих нейронов для проявления общепринятого социального поведения.

На основании данных о зеркальных нейронах, обнаруженных нами в литературе, стало гораздо легче интерпретировать наблюдения По-Хе в экспериментах с Пассажиром и Наблюдателем в качестве взаимодействия такого типа (перемещение всего тела с помощью искусственного устройства), которое ранее не связывали с репертуаром активности зеркальных нейронов в первичной моторной коре приматов.

Но это было еще не все.

Углубленный анализ нейрофизиологических свойств зеркальных нейронов, а также тот факт, что они встречаются как в первичной моторной, так и в соматосенсорной коре, заставили меня задуматься о серии предыдущих исследований, проведенных в нашей лаборатории, в которой мы, возможно, сами того не зная, натолкнулись на этот класс клеток коры. С 2012 года в рамках тренировок, которые обезьяны должны были пройти, обучаясь контролировать интерфейс «мозг-машина», мы провели несколько экспериментов, в которых животные пассивно наблюдали за сотней движений виртуальной руки на экране стоящего перед ними компьютера (рис. 7.4). Во время этих пассивных наблюдений мы одновременно регистрировали электрическую активность сотен нейронов, локализованных как в первичной моторной, так и в соматосенсорной коре. Каждый раз значительная доля этих нейронов настраивалась на различные движения виртуальной руки, и скорость их возбуждения менялась в ответ на эти движения. Когда обезьян подключали к интерфейсу «мозг-машина», эти натренированные нейроны позволяли животным быстро обучаться контролировать движения виртуальной руки исключительно с помощью активности мозга. Говоря попросту, пассивного наблюдения за виртуальной рукой было достаточно, чтобы обезьяна быстро овладевала этим двигательным искусством.

Рис. 7.4. Пассивные наблюдения. A: Обезьяна сидела перед экраном с мягко зафиксированными руками, закрытыми непрозрачным материалом. B: Реальное положение левой и правой руки по X-координате (черный цвет) по сравнению с предсказанным положением по X-координате (серый цвет) для случая пассивного наблюдения. Указан коэффициент корреляции Пирсона, r. C: Эффективность обезьян C и M квалифицировали по доле правильных результатов. Отдельно для обезьяны C показаны разные параметры модели (светло-серый и темно-серый цвет), а также сеансы, во время которых животные двигали виртуальной рукой только путем мозгового контроля (МК) без помощи рук (черный цвет, обе обезьяны). D: Доля экспериментов, в которых и левая (серые кружки), и правая рука (черные кружки) достигали соответствующей цели под контролем мозга. Линейная корреляция для обучения во всех случаях, показанных на рисунках A и B. E – F: Доля правильных предсказаний локализации цели по алгоритму k-NN для правой (черный цвет) и левой руки (серый цвет) за время эксперимента при пассивном наблюдении (E)

и мозговом контроле без помощи рук (F) для обезьян C и M. (G: Средние показатели, рассчитанные по алгоритму k-NN, для доли правильных предсказаний в зависимости от числа задействованных нейронов в разных зонах коры для каждой обезьяны; как в E – F.) Ifft P. et al. A Brain-Machine Interface Enables Bimanual Arm Movements in Monkeys. Science Translational Medicine 5, no. 210, November 2013: 210ra154.

Позднее, оглядываясь назад на эти наблюдения, я понял, что значительная доля нейронов первичной моторной и соматосенсорной коры могла проявлять физиологические свойства, соответствующие классическому определению зеркальных нейронов. На самом деле, возможно, именно в этом кроется объяснение способностей этих животных к обучению использованию интерфейса «мозг-машина» для перемещения суррогатных виртуальных конечностей. Любопытно, что с увеличением числа эпизодов пассивных наблюдений большее число нейронов в этих двух участках коры изменяли скорость возбуждения. Это позволяет выдвинуть очень интересную гипотезу (которая подробно не обсуждается в литературе по зеркальным нейронам) о том, что особые физиологические свойства этих нейронов могут приобретаться через обучение моторным навыкам просто в процессе наблюдения за движениями другого существа. Подтверждение этой гипотезы могло бы оказать огромное влияние на будущее нейрореабилитации, а также на другие прикладные аспекты концепции мозгосетей. Например, в социальной активности людей, когда требуется достичь высокого уровня коллективного перцептивно-моторного взаимодействия, как в командном спорте, тренировка в виртуальной среде может усилить активность зеркальных нейронов взаимодействующих игроков. Я легко представляю себе, как в результате вовлечения большого количества зеркальных нейронов игроки приобретают способность с точностью предугадывать двигательные намерения своих партнеров по команде, хотя никто из них не производит заметных действий. Подобная демонстрация, по сути, будет означать, что любая тренировка, усиливающая коллективную активность зеркальных нейронов игроков, способствует повышению коллективной двигательной результативности команды.

Хотя мы, по-видимому, разрешили первое несовпадение – существование зеркальных нейронов в первичной моторной коре, – нас смущало кое-что еще: возбуждение нейронов первичной моторной коры и премоторной коры, за которыми мы следили в экспериментах с Пассажиром и Наблюдателем, не усиливалось при наблюдении за движениями рук, рта или глаз другой обезьяны. Скорее, электрическая активность усиливалась при движениях всего тела, опосредованных искусственным устройством – электронным инвалидным креслом, когда Пассажир вел его через комнату. В отличие от классической постановки эксперимента, применявшейся до сих пор для изучения активности зеркальных нейронов, при которой одна обезьяна остается неподвижной в кресле и наблюдает за действиями другого лица (обычно экспериментатора), мы использовали пару обезьян, взаимодействующих при решении задачи, когда как минимум одна обезьяна (Пассажир) обязательно перемещалась по комнате. Более того, мы одновременно регистрировали активность моторной коры обеих обезьян. Благодаря этой особенности в постановке эксперимента мы впервые имели возможность одновременно регистрировать активность сотен нейронов коры мозга двух обезьян, полностью вовлеченных в решение общей задачи. Выходило, что мы впервые одновременно зарегистрировали предполагаемую активность зеркальных нейронов мозга пары обезьян, вовлеченных в решение общей двигательной задачи с непосредственным социальным взаимодействием.

Тип межмозговой синхронизации кортикальной активности, наблюдавшийся в эксперименте с Пассажиром и Наблюдателем, в современной нейробиологии называют межмозговым сопряжением. За последние десять лет потенциальная значимость межмозгового сопряжения для установления и поддержания социального поведения у животных начала привлекать нейробиологов – произошла настоящая смена парадигмы в исследованиях мозга. В целом такой подход предполагает, что сигналы, производимые мозгом одного индивидуума и принимаемые мозгом другого, могут функционально сопрягать две центральные нервные системы во времени и пространстве. В хорошей и доходчивой обзорной статье об этой новой сфере исследований профессор Принстонского университета Ури Хассон и его коллеги описывают серию примеров ключевых поведенческих реакций животных и человека, происходящих с вовлечением механизма межмозгового сопряжения. Например, певчие птицы в дикой природе обучаются новым песням за счет социального взаимодействия. Хассон с коллегами подчеркивают этот факт, описывая типичное брачное поведение воловьих птиц. Самцы этого вида обучаются песням, вызывающим сильную ответную реакцию у самок, которые сами петь не умеют. Самки одобряют хорошую серенаду легкими движениями крыльев. Это слабое движение крыльев служит мощным синхронизирующим (или усиливающим) сигналом для поющего самца, по-видимому, при участии зеркальных нейронов. Одобренный положительной двигательной реакцией самки птичий Паваротти наращивает усилия и повторяет определенные элементы песни, соблазняя самку. Не останавливаясь на этом, самец начинает выдавать и более сложные песни в надежде привлечь внимание других самок. Это важно, поскольку при выборе самца для спаривания самка ориентируется на то, как на его пение реагируют другие самки (немногое изменилось в стратегиях ухаживания в мире животных с тех пор, как птицы выучились петь).

Общение между двумя взрослыми людьми, использующими речь для обмена информацией, – еще один важнейший пример межмозгового сопряжения и его гигантского влияния на социальные взаимодействия между людьми. Здесь можно привести в пример множество удивительных аспектов человеческой речи, но сейчас я хочу сфокусировать внимание исключительно на ключевом неврологическом атрибуте парного человеческого общения с помощью речи и ее восприятия. Как и любое двигательное поведение, речь возникает благодаря двигательной программе, первоначально формирующейся в моторной коре лобной доли мозга. После загрузки в нейроны ствола мозга, контролирующие мышцы гортани, голосовых связок и языка, эта двигательная программа создает акустический сигнал, который не только повышает и понижает амплитуду, но и меняется с циклической периодичностью на основной частоте 3–8 Гц. Этот диапазон колебаний в целом описывает основной ритм или частоту, на которой в человеческой речи формируются слоги – в диапазоне от трех до восьми слогов в секунду. Это совпадает с тета-ритмом мозга – осцилляциями активности нейронов в диапазоне 3–10 Гц. Более того, группы нейронов слуховой коры человека, принимающие сигналы речи, которую слышит человек, создают подобные тета-ритму колебания в диапазоне частот 3–8 Гц. Как указывают Хассон и его коллеги, наличие сходной колебательной активности в производящей и принимающей речь системах мозга заставило многих теоретиков предположить, что это совпадение в мозговых ритмах может играть важнейшую роль в речевом общении между людьми. В целом, используя сходную амплитуду частот для производства, передачи и обработки устной речи, человеческий мозг обеспечивает оптимальную передачу и даже усиление звуков речи для повышения отношения сигнал/фон, поскольку окружающая среда часто создает помехи. Важную роль ритма с частотой 3–8 Гц в понимании речи дополнительно подчеркивает тот факт, что люди испытывают трудности с пониманием смысла сигналов с колебаниями на частоте выше 3–8 Гц.

Поделиться:
Популярные книги

Барон Дубов 2

Карелин Сергей Витальевич
2. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 2

Мама из другого мира. Чужих детей не бывает

Рыжая Ехидна
Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.79
рейтинг книги
Мама из другого мира. Чужих детей не бывает

На границе империй. Том 9. Часть 4

INDIGO
17. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 4

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи

Партиец

Семин Никита
2. Переломный век
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Партиец

Измена. (Не)любимая жена олигарха

Лаванда Марго
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. (Не)любимая жена олигарха

Я уже барон

Дрейк Сириус
2. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я уже барон

Боги, пиво и дурак. Том 6

Горина Юлия Николаевна
6. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 6

Мастер клинков. Начало пути

Распопов Дмитрий Викторович
1. Мастер клинков
Фантастика:
фэнтези
9.16
рейтинг книги
Мастер клинков. Начало пути

Последняя Арена 5

Греков Сергей
5. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 5

Печать Пожирателя

Соломенный Илья
1. Пожиратель
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Печать Пожирателя

Его наследник

Безрукова Елена
1. Наследники Сильных
Любовные романы:
современные любовные романы
эро литература
5.87
рейтинг книги
Его наследник

Барон Дубов 3

Карелин Сергей Витальевич
3. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 3