Чтение онлайн

на главную - закладки

Жанры

История электротехники
Шрифт:

Согласно этой теории реальное распределение частиц в пространственно-временном континууме (это слово использовано для выражения идеи о невозможности раздельного представления пространства и времени) можно описать только на основе понятий функции вероятности или «волны вероятности». При использовании данного подхода может быть определена только вероятность нахождения частицы в данной точке в данный момент времени. Разумеется, что столь глубокое проникновение в физическую картину построения вещества и поля выходит за рамки ТЭ, однако выяснение наличия различных ответов на вопрос, что такое ЭМП, и причин, порождающих эти расхождения, необходимо для понимания истории развития основных физических представлений о природе ЭМП, что важно не только для физиков, но и для электриков, специализирующихся в области ТЭ. Сторонники принципа близкодействия и в физике, и в ТЭ, ярким представителем которого являлся академик АН СССР В.Ф. Миткевич (1872–1951 гг.), вынуждены были предложить модели вхождения пространства в процесс взаимодействия первоначально при помощи введения понятия эфира, а в последующем и концепции

электронно-позитронной теории вакуума. Согласно современным представлениям свободное от материальных частиц пространство — вакуум (некий непротиворечивый эквивалент эфира), состоит из совокупности взаимосвязанных электронно-позитронных пар. Поскольку принимается, что масса и электрона, и позитрона определяется только энергией, связанной с этими частицами ЭМП, которая при образовании пары освобождается, то вакуум представляет собой пространство с минимальным уровнем энергии. В таком вакууме может иметь место явление поляризации в полном соответствии с представлениями М. Фарадея и Д.К. Максвелла. Однако при этом возникает вопрос о причинах и механизмах взаимодействия вакуума с полем тяготения. Согласно представлениям о строении материи элементарные частицы вещества электрон и позитрон обладают всеми качествами материальных тел и отличаются наличием у них свойства взаимодействовать с ЭМП, мерой которого является электрический заряд. Заряд, в свою очередь, является следствием наличия кварков, этих нецелых по значению зарядов. Вследствие невозможности исчезновения зарядов следует, что вакуум состоит из кварков, которые должны обладать и другими свойствами, связанными с гравитационным полем. Таким образом, даже попытка представления основной физической особенности материи, связывающей ее с ЭМП, приводит к необходимости более глубокого проникновения в свойства материи. В этом заключается одна из важнейших особенностей ЭМП, познание которой послужило в прошлом важным стимулом развития физики.

Развитие физических представлений о строении материи и элементарных частиц привело к пониманию объективности существования материи в виде ЭМП. В настоящее время превалирует принцип близкодействия и на этой основе признание независимо от нашего сознания существования, т.е. материальности, ЭМП. Признание этого факта не просто некий результат абстрактного спора, но важный шаг к пониманию сути самого ЭМП, следовательно, более адекватному описанию электромагнитных процессов в конкретных условиях, что способствует созданию более точных математических моделей. Электромагнитное поле и его математическая модель в виде системы уравнений Максвелла сыграли важную роль в развитии физики и понимании строения вещества. В отличие от гравитационного поля, для которого не было экспериментально выявлено основное свойство вещества в виде поля, а именно свойство распространяться в пространстве в виде отделенной от вещественных тел материи, исследования электромагнитных явлений позволили наблюдать эффекты, связанные с отдельным от материальных частиц существованием ЭМП в виде предсказанных Д.К. Максвеллом электромагнитных волн (Г. Герц, 1880 г., П.Н. Лебедев, 1895 г.). В этом отношении исключительное значение имеют исследования П.Н. Лебедевым (1866–1912 гг.) коротких электромагнитных волн (6 мм), позволившие установить наличие давления света на материальные тела (1899 г.).

4.3. РАЗВИТИЕ ОТЕЧЕСТВЕННОЙ ШКОЛЫ ТЭ

В России ТЭ с самого начала своего появления развивалась на основе признания материальности ЭМП и важности понимания картины протекания рассматриваемых физических процессов для их практического использования и описания в виде математических моделей. Развитие этой школы до 20-х годов XX столетия отличается освоением достижений в области, главным образом, физики электромагнитных явлений. Характерной для этого периода в России следует считать практическую неделимость исследований физических явлений, разработки простейших моделей этих явлений и решения задач, связанных с расчетом исследуемых физических величин. В этом отношении работы множества ученых можно отнести и к области физики, т.е. к фундаментальным наукам, и к области ТЭ, поскольку в них предлагались и методы создания математических моделей, и методы анализа и расчета этих моделей для простейших с современной точки зрения задач.

Русские ученые внесли заметный вклад в развитие электротехники и физики и тем самым заложили надежную базу для создания отечественной школы ТЭ. В этом отношении следует отметить работы А.Г. Столетова и представителей его школы (Н.С. Акулов, В.К. Аркадьев, А.С. Займовский и др.) по исследованию магнитных свойств железа и ферромагнетиков. Вкладом в развитие ТЭ следует считать исследование зависимости экономичности передачи электрической энергии от напряжения, проведенное Д.А. Лачиновым и М. Депре. В России становление отечественной школы ТЭ одновременно протекало в двух главных центрах науки — в Петербурге и Москве. Отставание России в промышленном развитии по сравнению с западными странами вынуждало русских ученых реализовать свои идеи и новые разработки на Западе. В этом отношении весьма показательна судьба М.О. Доливо-Добровольского, который изобретением трехфазных систем и вращающегося магнитного поля совершил революцию в электромашиностроении и электроэнергетике.

На начальном этапе внедрения электричества в практику русские инженеры показали свои большие потенциальные возможности. В 1893 г. инженер А.Н. Шенснович построил Новороссийский элеватор с электростанцией мощностью 1200 кВт, (максимальная к тому времени мощность), в которой работали четыре синхронных трехфазных генератора мощностью по 300 кВт. Трехфазные генераторы

и двигатели переменного тока, использованные на элеваторе, были изготовлены в собственных мастерских по проектной документации фирмы «Броун Бовери». По сути, на этом предприятии фактически была реализована наиболее оптимальная схема компоновки электропривода.

Однако в целом отсутствие в России равноценной западным странам проектной и промышленной базы стимулировало работы теоретического и исследовательского характера. В ТЭ такие исследования развивались в области формирования собственной точки зрения на ЭМП и, в частности, на влияние свойств среды на распространение электромагнитного поля и его использование для передачи сигналов. В прикладном аспекте следует отметить работы А.С. Попова (1859–1906 гг.), который в 1895 г. на заседании физического отделения Русского физико-химического общества продемонстрировал возможность передачи сигналов при помощи электромагнитных волн. Следует особо отметить изобретение Б.Л. Розингом, работавшим в Петербургском политехническом институте, системы передачи изображения (1911 г.) при помощи электронно-лучевой трубки (патент 1907 г.).

Важное значение для развития ТЭ имела изначальная ориентация большинства русских физиков на фарадей-максвелловы идеи о физической реальности процессов, происходящих в ЭМП. Профессор Петербургского университета И.И. Боргман (1849–1914 гг.) и ряд ученых на своих лекциях и в докладах на собраниях, организованных физическим отделением Русского физико-химического общества и электротехническим отделом Русского технического общества, пропагандировали и распространяли идеи, способствующие формированию знаний в области ТЭ. В контексте этих идей предметом глубокого и всестороннего рассмотрения стала проблема оценки принципов близко- и дальнодействия.

История создания электротехнических устройств показала, что решающее значение приобретает глубокое понимание физической картины протекающих в них электромагнитных процессов. Именно эта особенность в максимальной мере отличала развитие отечественной школы ТЭ. В этой связи следует отметить принципиальное отличие методических основ подготовки научных и инженерных кадров для экономики и формирования ТЭ в нашей стране от иностранных. Несмотря на совпадение на начальном этапе развития ТЭ и раздела физики, относящегося к ЭМП, в университетских курсах и у нас и за границей прикладные аспекты электромагнитных процессов не рассматривались. В этом отношении весьма показательно высказывание автора двухтомного курса физики И.И. Боргмана «Основания учения об электрических и магнитных явлениях», вышедшего из печати в 1895 г. в Петербурге. В этой книге автор заканчивает раздел, относящийся к рассеянию энергии в стали, следующими словами: «Вопрос о выделении тепла в железе при намагничивании его, т.е. рассеянии энергии при этом, представляет большой интерес в электротехнике, в теории трансформатора. Более подробное рассмотрение этого вопроса выходит из пределов настоящего курса». Эти, по существу дела, общие теоретические вопросы недостаточно полно рассматривались и в ряде специальных электротехнических курсов, читавшихся известными учеными электротехниками того времени: П.Д. Войнаровским, организовавшим первую русскую лабораторию высоких напряжений (2x100 кВ), А.А. Вороновым, крупным специалистом по электрическим машинам, и др. О необходимости восполнения этого пробела при подготовке кадров будущих специалистов-электриков вспоминает крупный ученый М.А. Шателен (1866–1957 гг.), чл.-корр. АН СССР с 1931 г.: «Особенно нас не удовлетворяла подготовка по теоретической электротехнике. Читавшийся тогда в Электротехническом институте «Специальный курс электричества», несмотря на то, что он читался таким крупнейшим профессором, как И.И. Боргман, не удовлетворял нас. В сущности это был тот же курс, который И.И. Боргман читал на физико-математическом факультете университета, только сокращенный. Никакой специфики, связанной с его целевым назначением не было.

И вот тут у Владимира Федоровича Миткевича начали назревать те мысли, которые потом были осуществлены в Политехническом институте, когда он начал читать на электромеханическом факультете (тогда отделении) курс теоретических основ электротехники. Аналогичного курса не было ни в русской, ни в иностранной литературе. Это было действительно изложение основ учения об электрических и магнитных явлениях, предназначенное специально для будущих инженеров-электриков и подготавливающее студентов к сознательному восприятию тех сведений, которые они потом получали в специальных курсах электрических машин, высоких напряжений и т.п.

Я помню тот исключительный интерес, который проявляли к этому курсу не только студенты, но и преподаватели и молодые электрики и физики. Литографированные листы этого курса разбирались нарасхват».

Речь здесь идет о курсе «Теория электрических и магнитных явлений», который В.Ф. Мит-кевич начал читать в 1904 г. в Политехническом институте и который был издан в 1912 г. В этих воспоминаниях высказана основная идея создания не просто учебного курса, а всего направления ТЭ, заключающаяся в создании совместными усилиями теоретиков и специалистов прикладного направления общего физического и математического фундамента для всех специальных дисциплин. В 1905 г. была начата подготовка инженеров электротехнической специальности и в Московском высшем техническом училище (МВТУ). Основные теоретические курсы «Теория переменных токов» (изданный в 1906 г.) и «Электрические измерения» в МВТУ начал читать Карл Адольфович Круг (1873–1952 гг.). Этими курсами, в систематической форме излагающими основные положения двух важнейших разделов ТЭ, и была заложена основа отечественной школы ТЭ. Со времени появления этих курсов в учебные программы всех высших учебных заведений, готовивших инженеров-электриков, неизменно входил курс «Теоретические основы электротехники».

Поделиться:
Популярные книги

Вторая мировая война

Бивор Энтони
Научно-образовательная:
история
военная история
6.67
рейтинг книги
Вторая мировая война

Кодекс Крови. Книга I

Борзых М.
1. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга I

Избранное

Хоакин Ник
Мастера современной прозы
Проза:
современная проза
5.00
рейтинг книги
Избранное

Чародейка. Власть в наследство.

Колесова Марина
Фантастика:
фэнтези
6.70
рейтинг книги
Чародейка. Власть в наследство.

Фараон

Распопов Дмитрий Викторович
1. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Фараон

Идеальный мир для Лекаря 27

Сапфир Олег
27. Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 27

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Метатель. Книга 2

Тарасов Ник
2. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель. Книга 2

Кротовский, не начинайте

Парсиев Дмитрий
2. РОС: Изнанка Империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, не начинайте

Младший сын князя

Ткачев Андрей Сергеевич
1. Аналитик
Фантастика:
фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Младший сын князя

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Отец моего жениха

Салах Алайна
Любовные романы:
современные любовные романы
7.79
рейтинг книги
Отец моего жениха

Родословная. Том 1

Ткачев Андрей Юрьевич
1. Линия крови
Фантастика:
городское фэнтези
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Родословная. Том 1

Предатель. Ты променял меня на бывшую

Верди Алиса
7. Измены
Любовные романы:
современные любовные романы
7.50
рейтинг книги
Предатель. Ты променял меня на бывшую