История электротехники
Шрифт:
Важным в теории электрических цепей является раздел, относящийся к расчету и анализу установившихся и переходных процессов в линейных цепях (ЛЦ) с сосредоточенными параметрами. Математические модели реальных устройств, как правило, являются упрощенными, идеализированными образами исходных физических процессов. Степень соответствия этих образов исходным зависит от уровня понимания физических процессов и возможности математически строго и достаточно полно учитывать характерные особенности процессов и свойств сред. Математические модели физических процессов в реальных системах в основном характеризуются нелинейными уравнениями. Одной из основных задач ТЭ в течение первой половины XX в. являлась разработка методов создания математических моделей. Для этого необходимо было правильное понимание картины протекания физических процессов. По этой причине в ТЭ большое место занял раздел под названием «Физические основы электротехники». В развитии этого раздела большой вклад внесла отечественная школа теоретических основ электротехники, созданная В.Ф. Миткевичем, К.А. Кругом, Л.Р. Нейманом, П.Л. Калантаровым, К.М. Поливановым, А.В. Нетушилом и их учениками. Были выработаны критерии, позволяющие для большого количества реальных устройств и режимов их работы выделить такие математические модели, которые в первом приближении допускают линеаризацию и описываются системой дифференциальных уравнений с постоянными коэффициентами. Сочетание методов решения таких уравнений и метода последовательных приближений применительно к линеаризованным моделям дало возможность отыскать более точные решения нелинейных задач для устройств,
Развитие методов расчета ЛЦ происходило в течение всего XX в., первоначально преимущественно для цепей с периодическими токами и напряжениями и простых цепей при ЭДС, несинусоидальной формы кривой. Предложенный Ч.П. Штейнмецем метод использования комплексных чисел для расчета установившихся процессов в цепях с синусоидальными токами и напряжениями в сочетании с разложением периодических несинусоидальных функций в ряд Фурье стал основным инструментом для расчета ЛЦ. В России и СССР основными пропагандистами этих методов стали К.А. Круг, В.Ф. Миткевич, Г.Е. Евреинов, А.И. Берг и др. Применение комплексного метода позволяло алгебраизировать интегродифференциальные уравнения и производить расчеты сложных электрических цепей. В связи со скромными возможностями используемых до середины 50-х годов технических средств вычислений (логарифмические линейки, механические счетные устройства) большое значение приобрели методы, позволяющие снизить порядок уравнений. Наряду с предложенным еще Д.К. Максвеллом методом контурных токов и узловых напряжений в практику расчетов были введены методы эквивалентного генератора, симметричных составляющих, эквивалентных преобразований и др. Существенное развитие теории линейных систем и электрических цепей связано с описанием динамических процессов в них при помощи метода переменных состояния (Т. Башков, Л. Заде, Ч. Дезоер, Ю.В. Ракитский, К.С. Демирчян, В.Г. Миронов, П.Н. Матха-нов, П.А. Бутырин и др.), позволившего более продуктивно использовать классические математические формы описания системы дифференциальных уравнений (уравнения Коши) и возможности ЭВМ. По мере усложнения конфигурации электрических цепей для расчета установившихся процессов в сложных электрических цепях были предложены методы расщепления цепей на четырехполюсные и многополюсные подцепи (Э.В. Зелях, 1931 г.; Г.Е. Пухов, 1949 г.; Р.А. Воронов, 1951 г.; В.П. Сигорский, 1954 г.; Г.Т. Адонц, 1951 г. и др.) с привлечением новых разделов тензорного анализа (Г. Крон), диакоптики (Г. Крон, А.З. Гамм, Л.А. Крумм, И.А. Шер, М.А. Шакиров, О.Т. Гераскин, В.А. Строев и др.) и матричной алгебры (В.П. Сигорский, А.И. Петренко, В.Г. Миронов и др.). Специфика расчета электрических цепей, особенно ЕЭС, породила новое направление в теории матриц, связанное с использованием особенностей слабозаполненных матриц для упрощения процедуры их обращения (Н. Сато и К. Тинней, 1963 г.). Методы обращения слабозаполненных матриц, разработанные в ТЭ с учетом возможностей ЭВМ, легли в основу специального раздела прикладной математики и оказались продуктивными и для других областей техники. Тождественность математических моделей и идеализированных электрических цепей позволила отыскать физические аналоги для различных математических процедур. Например, физически наглядно можно представить прямой и обратный ходы Гаусса, а также тензорный метод Крона с его элементарными контурами через процедуру сворачивания схемы электрической цепи при помощи представления влияния тока в одной ветви на напряжение другой через индуктивную связь (М.А. Шакиров). В электроэнергетике нашел широкое применение метод симметричных составляющих не только для расчета цепей, но также для создания аппаратуры с целью улучшения качества преобразования электрической энергии и создания теории и методов измерения мощности и электрической энергии (А.Н. Милях, А.К. Шидловский, И.М. Чиженко, Г.М. Торбенков, Ф.А. Крогерис и др.).
Для ТЭ характерно стремление разработать такие теоретические методы, которые обеспечивают возможность произвести качественный и количественный анализ результатов решения конкретной задачи. С этой точки зрения использование матричных методов без применения современных ЭВМ вплоть до 70-х годов носило больше методический, чем прикладной характер. Именно стремление довести решение задачи до аналитических выражений для выяснения общих свойств решаемой задачи помимо получения численных результатов в 50-х годах породило методы: матрично-топологичёские (Л.Д. Кудрявцев, Э.А. Меерович, Э.В. Зелях, В.А. Тафт, В.П. Сигорский и др.), алгебраические (К.Т. Ванг, С. Беллерт, Г. Возняцки, Я.К. Трохименко, П.Ф. Хасанов) и сигнальных графов (С. Мэзон, Г. Циммерман П.А. Ионкин, и др.). Однако для цепей с большим количеством узлов и контуров расчеты, произведенные по этим методам для вычисления определителя матрицы и ее алгебраических дополнений, оказались громоздкими. На практике эти методы оказываются малопродуктивными для анализа электрических цепей, поскольку выражение для определителя цепи даже с шестью узлами при взаимном соединении всех узлов будет содержать 64 = 1296 слагаемых. Не намного более продуктивным оказался и метод сигнальных графов по тем же причинам. Однако эти методы сыграли важную методическую роль и позволили по-иному формировать математические модели для многочисленных прикладных задач с уравнениями низкого порядка.
Важным новым направлением развития теории электрических цепей стала диагностика их параметров и состояния. Задачи, связанные с диагностикой, приобрели определяющее значение при управлении процессами в электрических цепях и системах. Особенно острыми они стали при организации диспетчерской службы ЕЭС страны для принятия оперативных решений по управлению эффективным распределением потоков электромагнитной энергии в ней.
Для решения этой задачи требуется знание текущего состояния системы т.е. ее структуры и параметров элементов системы, для чего и необходимо провести диагностику системы: определить путем измерений и расчетов параметры, необходимые для управления состоянием системы (или электрической цепи), и организовать проверку достоверности результатов диагностики. В решение этой проблемы заметный вклад внесли Н.В. Киншт, П.А. Бутырин, А.З. Гамм и др.
В теории линейных цепей особое положение занимают цепи с переменными во времени параметрами. Математический аппарат, пригодный для представления решения уравнений процессов в аналитической форме, существенно менее развит, чем таковой для линейных цепей, и в этом основная причина сложности создания пригодной для практики теории расчета процессов в таких цепях. Общие решения и анализ их свойств содержится во многих работах (в частности, Л. Заде и Ч. Дезоер «Теория линейных систем», К.С. Демирчян и П.А. Бутырин «Моделирование и машинный расчет электрических цепей», В.А. Тафт «Электрические цепи с переменными параметрами»). Исследованию специфических свойств таких цепей, в частности случаю периодичности изменения параметров цепей, посвящены многие работы. В таких цепях при помощи нахождения соответствующих преобразований иногда оказывается возможным свести их к цепям с постоянными параметрами. Этот случай характерен для описания процессов в электрических машинах (А.А. Горев).
4.6. ТЕОРИЯ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЛЦ
Важным разделом в ЛЦ являются методы анализа переходных процессов. На заре зарождения теории электрических цепей стало очевидным, что переход от одного установившегося режима к другому происходит не сразу. Наличие в электрических цепях конденсаторов и индуктивных элементов, заряды и потокосцепления которых не могут изменяться скачкообразно, приводит к тому, что становление нового режима происходит по мере изменения энергии ЭМП в этих элементах. В классической постановке задачи анализ переходных процессов в цепях сводится к нахождению полного решения системы интегродифферециальных уравнений и с этой точки зрения является традиционной. По мере развития теории дифференциальных уравнений этот подход обогащался различными методами нахождения частных решений исходной
Работы К.С. Демирчяна, П.А. Бутырина позволили установить, что преобразование Лапласа со сдвигом во времени, представляющее собой установившуюся реакцию системы с импульсной переходной функцией вида ept на воздействие f(t), порождается интегралом Дюамеля для бесконечного интервала времени, т.е.
Такое преобразование позволяет получить решение для установившегося процесса непосредственно через изображение задающей функции F(p,t), которая для данного преобразования является функцией времени. Если система дифференциальных уравнений записана относительно переменных состояний в виде матричного уравнения dx/dt = Ax + f (t) и изображение f(t) имеет вид F(p,t), то решение для установившегося процесса для системы уравнений состояний можно записать в виде хуст = — F(A, t), и тогда полное решение системы дифференциальных уравнений будет иметь вид x(t) = eAt[x(0) + F(A,0)] — F(A,t)]. Такой подход позволяет исключить трудоемкий процесс обратного преобразования Лапласа для нахождения оригинала x(t) изображения X(p) и установить непосредственную взаимосвязь между интегралом Дюамеля и преобразованием Лапласа со сдвигом. Применение этого подхода в случае электрических цепей с периодически изменяющимися параметрами позволяет в ряде случаев (например, электрические машины) отыскать аналитические решения (П.А. Бутырин). Решение дифференциальных уравнений может быть найдено не только на основе преобразования Лапласа или Фурье (где в качестве ядра интегрального преобразования использована экспоненциальная (Лаплас) или тригонометрическая (Фурье) функция), но и других видов функций. В этом отношении методы на основе представления входящих в дифференциальные уравнения функций при помощи степенных рядов Тейлора (Г.Е. Пухов) являются оригинальными. Преимуществом этого метода является возможность его использования и для случая нелинейных уравнений.
В СССР теория переходных процессов начала привлекать внимание в связи с быстрым развитием электроэнергетики и расширением прикладных областей применения электрических цепей в приводе, электротермии, связи, автоматическом управлении и др. Важным этапом для развития исследований в этой области явилось появление работ Р. Рюденберга, К.А. Круга, молодых ученых A.M. Данилевского и A.M. Эфроса, погибших во время Великой Отечественной войны, и многих специалистов в области математики. 40–50-е годы стали новым этапом развития теории переходных процессов. Была разработана теория, предложены критерии и методы подобия для физического и математического моделирования переходных процессов в сложных системах с электромеханическими преобразователями энергии (М.П. Костенко, Л.Р. Нейман, В.А. Веников). Развитие ЕЭС потребовало разработки теории переходных процессов в электрических цепях, содержащих электрические машины и линии с распределенными параметрами, которые существенным образом влияют на перенапряжения в системах (М.В. Костенко, С.А. Ульянов, Л.Г. Мамиконянц, К.П. Кадомская, М.Л. Левинштейн, В.В. Бушуев, Ч.М. Джуварлы, Л.А. Жуков, Ю.Г. Шакарян, В.В. Постолатий и др.).
Наряду с классическим и операторным методами широкое распространение получил частотный, или спектральный метод расчета переходных процессов. В течение 1950–1970 гг. частотные методы получили широкое внедрение в расчетную практику благодаря возможности экспериментального определения спектра частот входных и передаточных функций реальных устройств. Частотные характеристики ЛЦ полностью характеризуют поведение цепи, поскольку они зависят от ее инерционных свойств (наличия индуктивных и емкостных элементов) и от интенсивности рассеяния энергии ЭМП (наличия резистивных или эквивалентных им элементов) в ней. Поскольку любое воздействие может быть представлено своим спектром частот, то знания частотных свойств цепи достаточно, чтобы выяснить реакцию цепи на интересующее воздействие. Специфичными для этого метода оказались расчетные приемы, позволяющие описать переходные процессы на основе частотных характеристик цепи и воздействующих на нее возмущений. Частотные характеристики электротехнических устройств требовали особенно глубокого изучения в области автоматики и управления, усилительной техники и электросвязи. Поэтому именно в этих областях впервые с исчерпывающей полнотой была установлена зависимость между переходными процессами и частотными характеристиками и были разработаны методы расчета этих процессов. Этим вопросам в советской научной литературе уделялось большое внимание. Спектральные характеристики анализировались многими учеными, в том числе Л.И. Мандельштамом, Б.В. Булгаковым, А.А. Харкевичем, А.А. Вороновым, Г.А. Атабековым, В.В. Солодовниковым, В.А. Тафтом, И.С. Гоноровским, П.Н. Матхановым, Г. Боде, Э.А. Гиллемином, Дж. Карсоном и др. В практику расчета и проектирования электромагнитных процессов в электрических машинах большой вклад в части использования частотных методов внесли Я.М. Казовский, А.И. Важное, И.З. Богуславский и др. Использование частотных методов оказалось особенно продуктивным при анализе устойчивости состояния линеаризированных систем. Проблема устойчивости возникала также для систем с обратными связями. В этой связи следует отметить работы X. Найквиста (1932 г.), Г. Боде, Я.З. Цыпкина, А.В. Михайлова, который установил новый критерий устойчивости системы, и В.В. Солодовникова, предложившего замечательный по своей простоте и точности метод приближенного расчета переходных процессов по частотным характеристикам. Этот метод, известный как метод трапеций, получил широкое распространение в СССР.
В теории переходных процессов в последние десятилетия важное место заняли проблемы, связанные с протеканием процессов при наличии помех и под воздействием сил, носящих случайный или хаотический характер. Важность выяснения особенностей протекания таких процессов связана с повышением точности расчетных методов, с одной стороны, и необходимостью выделения полезной информации при выполнении полевых измерений в целях диагностики реального состояния исследуемой системы или устройства — с другой. Особое значение эта проблема приобретает при регулировании процессов в сложных электрических системах в реальном масштабе времени (Ю.Н. Руденко, Ф. Швепп, Д.В. Ром, А.З. Гамм, Л.А. Крумм, В.А. Баринов, С.А. Совалов и др.).