Чтение онлайн

на главную

Жанры

ИСТОРИЯ СРЕДНИХ ВЕКОВ (В двух томах. Под общей редакцией С.ДСказкина). Том 2

Сказкин Сергей Данилович

Шрифт:

После работ Галилея и Кеплера научное превосходство гелиоцентрической системы стало настолько очевидным, что со второй половины XVII в. астрономы, стоявшие на уровне научных требований своего времени, в большинстве случаев уже признавали ее правильность, хотя обычно излагали как одну из возможных гипотез наравне с системой Птолемея.

Развитие физики

В развитии физики перелом наступил позже, чем в астрономии. В XVI в. происходила своеобразная подготовка к созданию новой физики. В связи с гуманистическим движением и пересмотром господствовавших ранее взглядов некоторые мыслители предприняли попытки создать новые натурфилософские концепции, в которых были подвергнуты критике различные аспекты аристотелевской физики, усвоенной средневековой схоластикой.

Одновременно началась основанная на самостоятельных наблюдениях

разработка отдельных вопросов физики. Значительные успехи были достигнуты в статике и гидростатике. Благодаря более полному ознакомлению с трудами античных ученых были освоены достижения Архимеда в области статики и появились новые важные открытия. Наиболее крупным исследованием была работа «Принципы равновесия», принадлежавшая перу голландца Стевина (1548-1620), удачно совмещавшего в одном лице ученого-теоретика и инженерапрактика (он был военным инженером и главным инспектором гидротехнических сооружений в Голландии). Стевин сформулировал важнейшие теоремы гидростатики, в частности, он знал о так называемом гидростатическом парадоксе, который объясняет действие гидравлического пресса. Стевину приписывается также изобретение парусной повозки, приводимой в движение силой ветра.

Итальянский ученый Николо ТарталБЯ-{1500-1557) изучал под влиянием потребностей баллистики траекторию брошенного тела. Тарталья установил, что наибольшая дальность полета достигается при угле вылета в 45°. Английский ученый Вильям Гильберт (1540– 1603) з работе «О магните» на основе тщательных наблюдений и экспериментов дал подробное описание свойств магнита, а также всех известных в то время электрических явлений.

Много новых идей в области физики высказал Леонардо да Винчи, однако его записки не были опубликованы и остались неизвестны современникам.

В первой половине XVII в. происходит уже полный переворот в развитии физики. Этот переворот был связан с деятельностью Галилея, который решительно встал на путь создания науки, основанной на опыте и на применении точных математических методов при анализе и обобщении данных опыта. Новый дух, внесенный в науку Галилеем и другими учеными, виден на примере исследования вопроса о свободном падении тел. До Галилея преобладало ошибочное мнение Аристотеля, что скорость падения тел пропорциональна их двинул тезис, что скорость свободно падающего тела не зависит от веса. По рассказу биографа Галилея, для проверки правильности своих взглядов он сбрасывал шары различного веса с высокой башни. Затем, применяя, поскольку это можно было сделать на той стадии развития математики, точные математические методы для анализа процесса движений материальных тел, Галилей вывел уравнение равномерно ускоренного движения, изложил, хотя и не сформулировал в окончательном виде, закон инерции и принцип независимости действия сил, уточнил (или, правильнее, впервые создал) научные представления о скорости и ускорении, определял траекторию брошенного тела, начал изучение колебания маятника и , т. д. Он всегда стремился проверять свои выводы, сопоставляя их с наблюдениями, производил возможные эксперименты. Например, для проверки найденного им закона равномерно ускоренного движения Галилей скатывал бронзовые шарики по специально устроенному желобу, измеряя время, за которое они проходили различные расстояния (из-за отсутствия точных часов он измерял время скатывания шарика количеством воды, вытекающей через отверстие в дне сосуда). Эти труды Галилея явились основой для последующего развития кинематики и динамики.

Вклад в начатую Галилеем огромную работу по выяснению подлинных законов движения материальных тел внес и французский ученый Рене Декарт, сформулировавший, в частности, в более общем виде закон инерции (1644).

Зарождение и укрепление новых принципов научного исследования знаменовало начало бурного развития физики. Помимо механики начинают быстро развиваться и другие ее разделы. Важные открытия были сделаны в физике жидких и газообразных тел. Французский математик и физик Блез Паскаль (1623-1662), известный также как философ и писатель, успешно продолжил разработку вопросов гидростатики и в общем виде сформулировал названный его именем закон о передаче давления в жидкостях. Ученик Галилея Торичелли (1608– 1647) изучал атмосферное давление и создал ртутный барометр, получив в запаянной трубке пустое пространство над ртутью (торичеллиева пустота). Он отверг старое учение о «боязни пустоты» и утверждал, что ртуть в столбике барометра поддерживается именно атмосферным давлением. Правильность этого мнения экспериментально доказал Паскаль, организовав серию опытов с барометром, устанавливавшимся на различных уровнях горного склона. Немецкий инженер и бургомистр Магдебурга Отто

фон Герике (1602-1686) изобрел воздушный насос и поставил эффектный эксперимент, также подтвердивший существование атмосферного давления и обнаруживший всю его силу (при помощи так называемых магдебургских полушарий). Английский физик и химик Роберт Бойль (1627-1691) и французский ученый Мариотт (1620-1684) открыли независимо друг от друга названный их именами закон о соотношении объема газа с оказываемым на него давлением. Быстро развивалась также и оптика, чему способствовала работа по созданию и совершенствованию появившихся в это время оптических приборов (зрительная труба, телескоп, микроскоп), требовавшая изучения законов распространения и преломления световых лучей; важную роль в развитии оптики сыграли труды Кеплера («Диоптрика») и Декарта. Подъем научной мысли и потребность развивающейся науки, особенно астрономии и механики, в более совершенных методах математического исследования привели к быстрому развитию математики.

Развитие математики

Еще ученые Древней Греции и особенно средневекового Востока были знакомы с элементами алгебры, умели, например, решать уравнения первой и второй степени. В XVI в. новые открытия в этой области следовали одно за другим. Итальянские математики, в том числе Тарталья и Кардано (1501-1576), разработали способ решения уравнения третьей степени (формула Кардано). Один из учеников Кардано открыл способ решения уравнений четвертой степени. Для сложных вычислений (особенно в астрономии) были изобретены логарифмы. Первые таблицы логарифмов (Непера) появились в 1614 г .

Вырабатывалась система математических символов для записи алгебраических выражений и производства алгебраических действий. До XV в. буквы употреблялись в алгебре далеко не всегда и лишь для обозначения искомых неизвестных величин, алгебраические же действия записывались посредством слов при помощи громоздких фраз. Уравнения составлялись и решались только с определенными числовыми коэффициентами. С XV в. и до середине XVII в. во всеобщее употребление входят определейШе. –знаки . дляааяиси-. алгебра11чесш1Х действий (знаки сложения, вычитания, возведения в степень и т. д.), вводятся буквенные обозначения не только для неизвестных, но и для всех других величин. Благодаря последнему нововведению, связанному с именем французского математика Виета (1540-1603), впервые стало возможным в общей форме ставить и решать алгебраические задачи, появились алгебраические-фермулдд—АлЕеб—аическая символика получила дальнейшее развитие в трудах Декарта, который придал ей почти современный вид; в частности, он ввел принятые теперь знаки для обозначения неизвестных величин (последние буквы латинского алфавита – х, у, z). Одновременно с алгеброй развивалась тригонометрия, которая из подсобной дисциплины астрономии превратилась в особый раздел математической науки.

В это же время зарождаются некоторые совершенно новые разделы математики. Декарт и французский математик Ферма создали аналитическую геометрию, установив путем метода координат связь между геометрией и алгеброй. Математики первой половины XVII в. – Ферма, Кавальери, Паскаль, Декарт, Кеплер и другие разработали отдельные вопросы анализа бесконечно малых величин, подготовив почву для создания во второй половине столетия дифференциального и интегрального исчисления (И. Ньютон и Г. В. Лейбниц).

Возникновение новых отраслей математики имело огромное принципиальное значение. Началось изучение переменных величин и функциональной зависимости между ними. Вырабатываются математические методы, впервые позволившие подвергнуть точному анализу процессы движения в природе, явления материального мира в их изменениях и диалектических связях. Возникновение новых математических дисциплин было одним из необходимых условий последующих успехов в изучении природы.

Развитие химии, геологии, географии, ботаники, зоологии и т. д. сводилось главным образом к накоплению и описанию новых фактов. Однако в этом отношении были достигнуты значительные успехи. Была преодолена традиция черпать фактический материал, идеи и концепции из сочинений античных авторов. Основное внимание стало уделяться непосредственному и самостоятельному изучению природы.

В химии были открыты неизвестные ранее вещества, изучались их свойства, чему способствовали развитие красильного дела, некоторых химических производств, медицины (все шире использовавшей различные химические соединения в лечебных целях), горного дела и металлургии, а также все еще продолжавшая процветать алхимия. Хотя алхимики ставили перед собой фантастические цели, однако в процессе многочисленных и упорно повторяемых опытов они часто эмпирическим путем приходили к выяснению химических свойств многих веществ.

Поделиться:
Популярные книги

Леди для короля. Оборотная сторона короны

Воронцова Александра
3. Королевская охота
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Леди для короля. Оборотная сторона короны

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Чужак. Том 1 и Том 2

Vector
1. Альтар
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Чужак. Том 1 и Том 2

Как я строил магическую империю 4

Зубов Константин
4. Как я строил магическую империю
Фантастика:
боевая фантастика
постапокалипсис
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 4

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Этот мир не выдержит меня. Том 4

Майнер Максим
Первый простолюдин в Академии
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Этот мир не выдержит меня. Том 4

Цветы сливы в золотой вазе, или Цзинь, Пин, Мэй

Ланьлинский насмешник
Старинная литература:
древневосточная литература
7.00
рейтинг книги
Цветы сливы в золотой вазе, или Цзинь, Пин, Мэй

Вы не прошли собеседование

Олешкевич Надежда
1. Укротить миллионера
Любовные романы:
короткие любовные романы
5.00
рейтинг книги
Вы не прошли собеседование

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Гардемарин Ее Величества. Инкарнация

Уленгов Юрий
1. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Гардемарин Ее Величества. Инкарнация

Клан

Русич Антон
2. Долгий путь домой
Фантастика:
боевая фантастика
космическая фантастика
5.60
рейтинг книги
Клан

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II