Чтение онлайн

на главную - закладки

Жанры

История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет
Шрифт:

Эта реакция может показаться предельно простой – углекислый газ вкупе с водой (или любым другим поставщиком электронов) производит сахарозу и другие биомолекулы, но на самом деле подробности фотосинтеза весьма сложны и все еще не изучены до конца. Например, микроорганизмы выработали несколько способов потребления солнечного света и других источников энергии. Большая часть растений, производящих кислород, используют ярко-зеленый пигмент хлорофилл, который поглощает свет в красно-фиолетовой части спектра. Но на протяжении земной истории многие клетки применяли другие способы фотосинтеза, без образования кислорода. Другие светофильтрующие пигменты образовались в красных и бурых водорослях, пурпурных бактериях, поразительной красоты диатомеях и лишайниках самых разных оттенков. Некоторые изобретательные микроорганизмы применяли

в реакциях фотосинтеза инфракрасное излучение – абсолютно невидимая для человеческого глаза часть спектра, однако воспринимаемая кожными сенсорами как тепловая энергия.

Сложные варианты фотосинтеза стали предметом исследования для биохимика Роберта Бланкеншипа, который одновременно заведует двумя кафедрами, химии и биологии, в Университете Вашингтона в Сент-Луисе. Бланкеншип с коллегами, в том числе бывшими сотрудниками влиятельной команды астробиологов из Университета штата Аризоны, исследует признаки ранних форм жизни на Земле и других планетах. В их намерения входит изучить различные варианты фотосинтеза на примере всевозможных разновидностей живых микроорганизмов – пурпурных, бурых, желтых и зеленых, выделяя в их геномах сходство и различие. Они получают данные о сложнейших аспектах фотосинтеза: о различных фотосинтетических пигментах; о точном чередовании молекул белка, при котором электроны передаются от одной молекулы к другой; о многообразных способах использования полученных электронов для строительства блоков живой клетки; о бесчисленном количестве «антенных устройств». (Что примечательно, клетки вырабатывают специальные группы молекул, которые действуют в качестве миниатюрных светоуловителей.)

Бланкеншип считает, что жизнь изобрела невероятное разнообразие приемов фотосинтеза. Похоже, что жизнь пользуется любым доступным источником энергии. Микроорганизмы вырабатывают один за другим новые способы улавливания света, необходимого для роста и размножения, – по меньшей мере пять различных таких способов уходят корнями в древнейшую историю Земли. Многие аспекты этой истории неизвестны, но самые древние и примитивные химические реакции, датируемые 3,5 млрд лет назад, совершенно очевидно, не вырабатывали кислород. Прародители тех первичных клеток дошли до нашего времени и подтверждают, что самые древние организмы были анаэробными, т. е. не только не требовали кислорода, но и вообще не переносили его.

Исследования Бланкеншипа и его сотрудников помимо того, что они выявляют многообразные химические стратегии, еще и указывают на то, что микроорганизмы имеют тенденцию менять и перестраивать гены, ответственные за поглощение света, захватывая фотосинтетические технологии своих соперников, т. е. занимаясь своего рода промышленным шпионажем. На самом деле современная техника фотосинтеза, используемая практически всеми растениями, представляет собой комбинацию двух примитивных схем (прозаично именуемых Фотосистема I и Фотосистема II). Таким образом, современные организмы способны комбинировать биосинтетические реакции, поглощая и используя солнечный свет гораздо эффективнее, чем это происходило на ранних стадиях развития жизни на Земле.

Больше кислорода

Даже без фотосинтеза поверхность Земли неторопливо подвергалась окислению вследствие медленной утечки молекул водорода в космическое пространство. В верхних слоях атмосферы молекулы воды подвергаются разрушительному воздействию ультрафиолетовой радиации и космических лучей, вызывающие распад воды на водород и кислород. Атомы воды превращаются в более простые молекулы, в основном H2 и O2, а также небольшое количество озона O3. Полученные в результате распада легкие и подвижные молекулы водорода H2, в отличие от громоздких и тяжелых молекул кислорода O2 и O3, способны преодолеть земное притяжение и улететь в беспредельные просторы космоса. На протяжении истории Земли какое-то количество водорода таким путем покинуло планету, оставив после себя постепенно накапливающийся избыток кислорода. Этот процесс продолжается и сегодня: ежегодно Земля теряет количество водорода в объеме нескольких плавательных бассейнов олимпийского размера. В результате того же процесса Марс, который меньше Земли по массе и силе гравитации и неспособен удерживать водород, лишился большей части воды. За 4,5 млрд лет большая часть приповерхностного водорода улетучилась с Марса в космос, а железо, близкое к поверхности,

подверглось коррозии, что и придало планете характерный красный цвет. Но даже при этом общее количество кислорода в тонком слое атмосферы Марса невелико: если собрать его на поверхности, слой жидкого кислорода составит меньше одной тысячной доли сантиметра.

При увеличении количества кислорода с одновременной потерей водорода поверхность Земли так же приобрела бы ржаво-красный цвет за много миллиардов лет, но вряд ли оно сыграло бы важную роль в формировании окружающей среды на ранней стадии существования планеты. По самым точным оценкам, до Великого кислородного события в атмосфере Земли приходилась менее одной молекулы кислорода на триллион. (В наши дни соотношение один к пяти.) Этот незначительный запас кислорода еще в момент появления был бы мгновенно поглощен на поверхности планеты громадным количеством жаждавших окисления атомов железа в океанах и почве. Даже если бы на Земле не появилась жизнь, наиболее устойчивые области материков украсились бы красноватым оттенком, но этот окисленный слой был бы всего лишь косметическим макияжем.

До эпохи фотосинтеза жизнь, возможно, тоже внесла свой вклад в виде небольшой доли кислорода. На самом деле живые клетки освоили по крайней мере четыре разных способа производства кислорода из окружающей среды. Сегодня кислородный фотосинтез играет главную роль, но в древние времена свою скромную долю внесли и другие биохимические процессы.

Жизнь извлекает энергию из окружающей среды любым доступным ей способом. Простейшим способом получения энергии, сопровождаемым выделением кислорода, является захват богатой кислородом и химически активной молекулы. Именно так некоторые микроорганизмы научились использовать молекулы пероксида (H2O2, образованные в результате различных реакций в верхних слоях атмосферы) для того, чтобы производить О2 плюс энергия. Правда, этот вид молекул не был широко распространен в докислородную эпоху, и вряд ли эти разновидности микроорганизмов могли существенно изменить древний мир планеты.

В Голландии группа микробиологов не так давно представила доклад о более продуктивном способе производства кислорода: они открыли новый вид микроорганизмов, которые получают энергию за счет расщепления оксидов азота. В ранней истории Земли такие оксиды возникали в небольшом количестве при взаимодействии газообразного азота с минералами – например, во время грозовых разрядов. В современную эпоху благодаря распространению и использованию азотных удобрений многие реки, озера и устья рек сильно загрязняются разными видами азотных оксидов, что способствует размножению и процветанию микроорганизмов. Недавно была обнаружена способность микроорганизмов расщеплять оксиды азота на азот и кислород, а затем использовать кислород для «сжигания» природного газа, т. е. метана, получая таким образом энергию. Эта химическая стратегия может оказаться весьма полезной на бедных кислородом планетах вроде Марса.

Окаменелости свидетельствуют

Из всех механизмов производства кислорода фотосинтез является безусловным победителем, но как давно в истории Земли начался фотосинтез и производство кислорода? Для палеонтологов, тщательно исследующих фрагментарные остатки древнейших форм живой природы, более наглядна связь между прошлым и настоящим живых организмов, чем для представителей других наук. Поэтому неудивительно, что именно палеонтологи одними из первых обнаружили свидетельства окисления Земли возрастом более 2 млрд лет. В поисках ранних следов фотосинтеза охотники за окаменелостями, естественно, обратились к древнейшим горным породам Земли.

Ископаемые свидетельства древних клеток в лучшем случае разрознены. Бесценные и малочисленные сохранившиеся следы микроорганизмов в течение миллиардов лет подвергались погребению, разогреву, сдавливанию и химическим воздействиям. То, что сохранилось, находится в переработанном и раздробленном состоянии, часто в таком виде, который требует известной доли воображения, чтобы усмотреть в нем биологическую природу. Скопления окаменелых микроорганизмов нередко выглядят как россыпь миниатюрных черных пятнышек, поэтому неудивительно, что всякое сообщение о микроорганизмах возрастом более 2 млрд лет сопровождается скептическим, чтобы не сказать откровенно насмешливым откликом.

Поделиться:
Популярные книги

Буревестник. Трилогия

Сейтимбетов Самат Айдосович
Фантастика:
боевая фантастика
5.00
рейтинг книги
Буревестник. Трилогия

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник

Эволюционер из трущоб

Панарин Антон
1. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб

Запрети любить

Джейн Анна
1. Навсегда в моем сердце
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Запрети любить

Герцогиня в ссылке

Нова Юлия
2. Магия стихий
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Герцогиня в ссылке

Игра на чужом поле

Иванов Дмитрий
14. Девяностые
Фантастика:
попаданцы
альтернативная история
5.50
рейтинг книги
Игра на чужом поле

Санек 2

Седой Василий
2. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 2

Невеста инопланетянина

Дроздов Анатолий Федорович
2. Зубных дел мастер
Фантастика:
космическая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Невеста инопланетянина

Метка драконов. Княжеский отбор

Максименко Анастасия
Фантастика:
фэнтези
5.50
рейтинг книги
Метка драконов. Княжеский отбор

Зауряд-врач

Дроздов Анатолий Федорович
1. Зауряд-врач
Фантастика:
альтернативная история
8.64
рейтинг книги
Зауряд-врач

Никчёмная Наследница

Кат Зозо
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Никчёмная Наследница