История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет
Шрифт:
В последние 40 лет одним из самых скрупулезных палеонтологов является Уильям (Билл) Шопф, профессор Университета Калифорнии в Лос-Анджелесе. Основываясь на своих исследованиях древних окаменелых микроорганизмов, он составил контрольный перечень признаков, необходимых и достаточных для подтверждения живой природы образцов. Вначале сосредоточившись на более близких по времени и хорошо сохранившихся, а потому не подлежащих сомнению экземплярах, Шопф уверенно продвигался в изучении все более и более древних окаменелостей, отдаляясь за 3 млрд лет, в область архейского эона.
Критерии, выдвинутые Шопфом, отличаются простотой и логичностью: окаменевшие микроорганизмы должны соотноситься с точно датированными осадочными слоями, залегающими в древней среде обитания этих микроорганизмов. Ископаемые остатки должны иметь единообразную форму и размер, например отчетливую
Этот перечень важнейших признаков для всякого набора ископаемых микроорганизмов неплохо послужил Шопфу. Ему удалось опубликовать безупречные описания новейших ископаемых находок, а попутно подвергнуть сомнению некоторые неподтвержденные претензии конкурентов на обнаруженные следы древнейших живых организмов. Его самое знаменитое выступление состоялось в 1996 г., когда ученые НАСА объявили, что обнаружены следы микроорганизмов в одном из марсианских метеоритов. В исполненной драматизма пресс-конференции, организованной НАСА в августе того же года, Шопф оказался единственным раскольником. С едва завуалированным презрением он отметил, что марсианские «окаменелости» слишком малы по размеру, лишены необходимых химических и биологических признаков и вдобавок обнаружены в несоответствующей породе. Несмотря на убедительность доводов Шопфа, президент Клинтон отозвался с похвалой об этом открытии, которое, возможно, послужило толчком для финансирования исследований НАСА в области астробиологии – деньги важны для всех нас (включая самого Шопфа), занимающихся вопросами происхождения жизни.
По иронии судьбы, сам Шопф вскоре столкнулся с весьма скептическим отношением к заявлению, которое он сделал еще в 1993 г., когда объявил об обнаружении древнейших на Земле ископаемых микроорганизмов в сланце Aпекс, пачке осадков, сформировавшейся почти 3,5 млрд лет назад на северо-западе Австралии. Фотографии весьма любопытных продолговатых структур черного цвета с ячеистой сегментацией выглядели достаточно убедительно. Описание их, опубликованное в солидном научном журнале Science, содержало их художественно выполненные рисунки, расположенные рядом с фотографиями современных сине-зеленых водорослей, внешне похожих на окаменелые образцы. Шопф даже предположил, что найденные им окаменелости, возможно, вырабатывали кислород. В течение нескольких лет эти фотографии наиболее часто использовались в качестве самых популярных палеонтологических иллюстраций и, сопровождаемые надписью «древнейшие окаменелости», украшали многочисленные учебники, нередко вместе с предположением о том, что это были микроорганизмы обладающие фотосинтезом.
Как правило, всякое выдающееся открытие в науке должно сопровождаться выдающимися доказательствами, а также самыми придирчивыми проверками. Все образцы окаменелостей, найденные Шопфом, хранились в Британском музее в Лондоне, в виде скрупулезно каталогизированных тонких прозрачных пластинок породы, приклеенных к предметным стеклам. В 2000 г. палеонтолог Мартин Брейзер из Оксфорда предпринял критический повторный осмотр этого сланцевого материала и пришел к совершенно иному выводу.
«Тонкие пластинки» сланца Apex, представленные Шопфом, оказались довольно толстыми, во всяком случае по сравнению с размерами микроорганизмов. Брейзер и его коллеги в конце концов исследовали большинство этих миниатюрных образцов, сфотографированных и опубликованных Шопфом, и к своему удивлению обнаружили, что большинство фотографий явно вводят в заблуждение. Каждый снимок Шопфа, ставший палеонтологической классикой, представляет собой микроскопическую фокальную плоскость – тонкий и плоский срез поперек темных трехмерных объектов. Брейзер и его сотрудники применили более современную фототехнику, которая позволила сделать трехмерные изображения и обнаружить гораздо более сложное явление. Только при наведении фокуса микроскопа в самую толщу образцов удалось воспроизвести классическое изображение окаменелостей Apex. Но стоило сдвинуть фокус выше или ниже, как такие убедительные на вид продолговатые клетки превращались в извилистые пластины или неправильной формы комки, иногда со складками, ответвлениями или изгибами. Согласно исследованиям Брейзера, «цепочки микроорганизмов» на самом деле являются произвольными поперечными срезами более сложных трехмерных
Шопф выступил с опровержением, опубликовав в том же номере статью, помещенную рядом со статьей Брейзера. Шопф с коллегами представили новый анализ образцов Apex с их углеродистыми черными вкраплениями, доказывая, что они имеют изотопные свойства и атомную структуру, характерную для биовещества. Он упрямо отстаивал «древнейшие биоокаменелости», хотя отказался от утверждения, что это были микроорганизмы, обладающие фотосинтезом. Как бы то ни было, семена сомнения в правоте Шопфа были посеяны, а в поисках ранних форм жизни были приняты более строгие критерии.
В более поздней публикации Мартин Брейзер и его коллеги из Австралии объявили, что обнаружили «древнейшие окаменелости» – следы микроорганизмов в горном массиве Strelley Pool, сформировавшемся 3,4 млрд лет назад, всего в 35 км от места находок Шопфа, более древних по возрасту, но, как выясняется, сомнительных. Некоторые считают, что на этом можно поставить точку в затянувшемся научном споре.
Самые маленькие окаменелости
Представьте себе, что происходит, когда погибает колония микроорганизмов. Как правило, крошечный мешочек химических веществ, ранее бывший живой клеткой, распадается и рассеивается; крупные биомолекулы распадаются на более мелкие части, в основном на воду и углекислый газ. Самые вкусные куски могут быть съедены другими микроорганизмами, а несъедобные молекулы растворяются в океане, испаряются в атмосфере или застывают в горных породах. Обычно через несколько лет уже ничего не остается, поскольку время безжалостно к таким хрупким микроскопическим остаткам.
При необычных обстоятельствах – например, если мертвые клетки оказываются быстро погребенными, а вокруг нет разрушителя-кислорода и камень не слишком накаляется, – наиболее прочные биомолекулы могут сохраниться, хотя и в измененном виде. Больше всего шансов у молекул с прочной основой из примерно двадцати атомов углерода, иногда связанных в простую длинную цепь (с налипшими по бокам несколькими атомами углерода), иногда в группу колец (наподобие олимпийского символа). Эти биопризнаки представляют собой нечто вроде миниатюрного скелета. Они остаются от гораздо более крупных скоплений действующих молекул, распавшихся и лишенных всего, кроме наиболее устойчивого остова.
Если обнаружить такой молекулярный скелетик в древней осадочной породе и при этом быть уверенным, что он не попал сюда из соседнего, более молодого слоя или вообще из недавно погибших живых клеток (например, от современных приповерхностных микроорганизмов или омертвевшей кожи с вашего пальца), тогда можно заявить об открытии химического ископаемого – окаменелости, т. е. атомов некогда живого микроорганизма. Отсюда и очарование черными вкраплениями, найденными Шопфом в сланцах Apex.
Многие современные специалисты, занимающиеся молекулярной палеонтологией, ведут восхитительную двойную жизнь. Они могут предпочесть суровую стезю полевого геолога, пробираясь по труднодоступной местности, вынося на себе по полсотни килограммов многообещающих образцов горных пород, добытых где-нибудь в забытых Богом закоулках прожаренной солнцем пустыни, промерзшей тундры или горных вершин. Год за годом небольшие группы отправляются в Западную Австралию, Южную Африку, Гренландию или Центральную Канаду в поисках все новых и новых образцов. Могут трудиться на буровых установках в надежде добраться до древнейших пород, не затронутых ни климатом, ни растительностью. Эти экспедиции нередко сулят многие месяцы трудностей, опасностей и лишений.
Такая полная приключений жизнь контрастирует с месяцами скучного анализа, проводимого в стерильных лабораториях, где малейший вздох или отпечаток пальца могут необратимо испортить драгоценный образец породы трехмиллиардолетней давности. Это требует времени и терпения, исключительной точности и целого арсенала сложнейших приборов – и все ради нескольких молекул, извлекаемых из добытых образцов породы. Среди самых известных представителей этого искусства XXI в. можно назвать австралийского палеонтолога Роджера Саммонса, работающего в MIT на кафедре естествознания Земли и планет. Там он возглавляет Лабораторию Саммонса – чокнутую команду, состоящую из дюжины охотников за окаменелыми молекулами в древнейших породах нашей планеты.