Измерять и навязывать. Социальная история искусственного интеллекта
Шрифт:
Вторая часть посвящена коннекционизму как главной родословной современных систем ИИ (я избегаю повторения известной литературы по кибернетике, теории информации и символическому ИИ). В шестой главе развитие искусственных нейронных сетей рассматривается с точки зрения, которой обычно пренебрегают, а именно в перспективе исследований самоорганизации организмов и машин (их обошла вниманием даже Боден в своей огромной истории ИИ). Теории самоорганизации сегодня востребованы в физике, химии, биологии, неврологии и экологии, но именно в среде кибернетиков, а не представителей естественных наук, в середине XX века вспыхнули дебаты о самоорганизации. В главе рассмотрены парадигмы самоорганизующихся вычислений, которые способствовали, среди прочего, укреплению коннекционизма, – в частности, концепция нейронных сетей Уоррена Мак-Каллока и Уолтера Питтса (1943–1947), клеточные автоматы Джона фон Неймана (1948) и перцептрон Розенблатта (1957). Также в шестой главе исследуется реакция кибернетических теорий самоорганизации на социотехнические изменения. Подобно иным вариантам механистического мышления в другие века, кибернетика проецировала на мозг и природу формы организации, которые были частью технического состава окружающего общества. Ключевым примером здесь выступает телеграфная сеть, которая использовалась в XIX веке в качестве аналогии нервной системы, а в ХХ веке – для формализации нейронных сетей, включая машину Тьюринга.
В седьмой главе прослеживается связь концепций искусственных
В восьмой главе разъясняется двойственная роль неолиберального экономиста Фридриха фон Хайека в укреплении коннекционизма. В книге 1952 года «Сенсорный порядок» Хайек предложил коннекционистскую теорию разума, куда более продвинутую, чем определения ИИ, выработанные на Дартсмутском семинаре в 1956-м. В этом тексте, как предположили Мак-Каллок и Питтс, Хайек размышлял о создании машины, функционально подобной «нервной системе как инструменту классификации» [62] . Подобно кибернетикам Хайек изучал самоорганизацию разума, но с другой целью: его интересовала не промышленная автоматизация, а автономия рынка.
62
Hayek F. The Sensory Order: An inquiry into the Foundations of Theoretical Psychology. Chicago: University of Chicago Press, 1952. P. 55.
Девятая глава посвящена одному из наиболее важных и наименее изученных эпизодов в истории ИИ: изобретению Розенблаттом в 1950-х годах искусственной нейронной сети перцептрон. Несмотря на свои ограничения, перцептрон стал прорывом в истории вычислений – в нем впервые была автоматизирована техника статистического анализа; по этой причине его считают первым алгоритмом машинного обучения [63] . В качестве технической формы перцептрон претендовал на имитацию биологических нейронных сетей, но с математической точки зрения осуществлял совсем другой трюк. Чтобы решить задачу распознавания образов, машина представляла пиксели изображения как независимые координаты в многомерном пространстве. Любопытно, что статистический метод многомерной проекции зародился в психометрии и евгенике в конце XIX века и аналогичен тому методу оценки «общего интеллекта» [general intelligence], который Чарльз Спирмен реализовал в спорном тесте на определение коэффициента интеллекта (IQ). Это еще одно доказательство социальной генеалогии ИИ: первая искусственная нейронная сеть – перцептрон – родилась не как автоматизация логического рассуждения, а как статистический метод, который применялся для измерения интеллекта в когнитивных задачах и соответствующей этим измерениям организации социальной иерархии.
63
Первое использование термина «машинное обучение» см.: Samuel A. Some Studies in Machine Learning Using the Game of Checkers // IBM Journal of Research and Development 44 (1959): 206–226. Также Тьюринг размышлял о «неорганизованных машинах», которые обладают способностью самоорганизовываться и, таким образом, обучаться: Turing A. Intelligent Machinery (1948) // The Essential Turing. B. Jack Copeland (ed). Oxford: Oxford University Press, 2004.
В заключении утверждается, что принцип действия ИИ представляет собой не только автоматизацию труда, но и навязывание социальной иерархии ручного и умственного труда посредством автоматизации. С XIX по XX век «хозяйский глаз» промышленного капитализма охватил все общество и установил новые формы контроля, основанные на статистических измерениях «интеллекта», с целью дискриминировать рабочих по уровню навыков. Результаты теста IQ применялись именно так: американский психолог Льюис Терман в 1919 году заявлял, что «IQ 75 или ниже обычно относится к неквалифицированным рабочим, от 75 до 85 – диапазон для полуквалифицированного труда, а показатели 80 или 85 вполне достаточны для успеха в некоторых видах квалифицированного труда» [64] . ИИ продолжает кодировать социальные иерархии и дискриминировать рабочую силу, косвенно навязывая метрики разумности. Классовые, гендерные и расовые предубеждения, которые системы ИИ, как известно, только усиливают, следует рассматривать не как технический недостаток, а как неотъемлемую дискриминационную черту автоматизации при капитализме. Предвзятость ИИ не ограничивается социальным угнетением: она также выражается в неявном навязывании иерархии труда и знаний, что усиливает поляризацию квалифицированных и неквалифицированных работников на рынке труда. Замену традиционных рабочих мест системами ИИ следует рассматривать вместе с умножением прекарных, низкооплачиваемых и маргинализированных рабочих мест в глобальной экономике [65] . ИИ и «призрачная работа» – две стороны одного и того же механизма автоматизации труда и социальной психометрии.
64
Terman L. The Intelligence of School Children: How Children Differ in Ability, the Use of Mental Tests in School Grading, and the Proper Education of Exceptional Children. Boston: Houghton Mifflin, 1919. P. 274. Цит. по: Gould S. J. The Mismeasure of Man. New York: Norton & Company, 1981. P. 212.
65
О деградации рынка труда за счет умножения бессмысленных профессий см.: Грэбер Д. Бредовая работа. Трактат о распространении бессмысленного труда. М.: Ад Маргинем, 2020. См. также: Бенанав А. Автоматизация и будущее работы. М.: Изд-во Института Гайдара, 2022.
Наконец, выдвинутая в книге трудовая теория автоматизации представляет собой не только аналитический принцип, нужный для демонтажа «верховного алгоритма» монополий ИИ, но и принцип синтетический. Он говорит о практике социальной автономии, которая создаст новые формы знания и новые культуры изобретательства.
1. Материальные орудия алгоритмического мышления
Силу наших «ментальных» орудий усиливает сила наших «металлических» орудий [66] .
66
Wing J. M. Computational Thinking and Thinking about Computing // Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences 366, no. 1881 (2008): 3718.
Использование материального орудия всегда дает больше знаний, чем вложено в его изобретение [67] .
Правила стали механическими до того, как им могли следовать машины [68] .
67
Damerow P. and Lefevre W. Tools of Science // Abstraction and Representation: Essays on the Cultural Evolution of Thinking. Berlin: Springer, 2013. P. 401.
68
Daston L. Algorithms before Computers: Patterns, Recipes, and Rules // Katz Distinguished Lecture in the Humanities, Simpson Center for the Humanities, University of Washington, 19 April 2017. См. также: Daston L. Rules: A Short History of What We Live By. Princeton, NJ: Princeton University Press, 2022.
Воссоздание расчлененного бога
В космогоническом мифе индуистских Вед говорится, что верховное божество Праджапати распадается на части в акте сотворения вселенной. После творения происходит нечто контринтуитивное с точки зрения западных нарративов о господстве и принципов непротиворечивости: тело творца оказывается разобранным и расчлененным. В Индии этот древний миф разыгрывают в ритуале Агничаяна. Ритуал предполагает строительство огненного алтаря Шьеначити, и этот процесс служит символическим воссозданием распавшегося тела бога (см. рис. 1.1).
Рис. 1.1. Диаграмма огненного алтаря Агничаяна (Staal F. Greek and Vedic geometry // Journal of Indian Philosophy 27, no. 1 (1999): 111)
Алтарь Шьеначити возводят из тысячи кирпичей выверенной формы и точного размера в соответствии со сложной схемой, изображающей сокола. Рабочие кладут пять слоев по 200 кирпичей в каждом, повторяя специальную мантру и следуя пошаговым инструкциям. В основе ритуала лежит решение загадки: каждый слой должен повторять одну и ту же пространственную форму, но различаться внутренней конфигурацией [69] . Соколиный алтарь следует обращать на восток, знаменуя предстоящий символический полет воссозданного бога к восходящему солнцу – здесь мы видим уникальный пример божественного перевоплощения средствами геометрии.
69
Ramasubramanian K. Glimpses of the History of Mathematics in India // Mathematics Education in India: Status and Outlook. R. Ramanujam and K. Subramaniam (eds). Mumbai: Homi Bhaba Centre for Science Education (TIFR), 2012.
Агничаяна подробно описана в шульба-сутрах; это посвященное вопросам геометрии дополнение к Ведам записано около 800 года до н. э. в Индии и опирается на гораздо более древнюю устную традицию [70] . Согласно этим текстам риши (духи жизни) создали семь пуруш (космических существ), имеющих форму квадрата; вместе они образовали единое тело, а уже из этой простой конфигурации возникло сложносоставное тело Праджапати [71] . Шульба-сутры учат строить алтари определенных геометрических форм, чтобы снискать благорасположение богов. Так, говорится, что «тем, кто хочет уничтожить настоящих и будущих врагов, следует построить огненный алтарь в форме ромба» [72] . Помимо религиозного значения ритуал Агничаяна и шульба-сутры обладали функцией передачи важных для общества техник, например умения планировать строительство и увеличивать существующие здания с сохранением первоначальных пропорций [73] . Агничаяна служит примером того, что математическое знание изначально носит социально-материальный характер, а также демонстрирует типичную для кастовой системы иерархию ручного и умственного труда. При сооружении жертвенника рабочие руководствуются правилами, которые традиционно существуют лишь у определенной группы мастеров. Она же и передает эти правила. Ритуалы, подобные Агничаяне, – это не только упражнения в геометрии. Они обучают процедурному знанию, которое не сводится к абстракции и основано на продолжительной «механической» тренировке. Кроме того, они показывают, как религия может побуждать к точности, а духовные упражнения – использоваться как средство трудовой дисциплины [74] .
70
Голландский индолог Фриц Сталь описывает Агничаяну в двухтомнике (и документальном фильме) об экспедиции в Кералу в 1975 году. См.: Staal F. Agni: The Vedic Ritual of the Fire Altar. Two vols. Berkeley: Asian Humanities Press, 1983. Сталь утверждает, что абстрактные культурные формы возникают из бессознательного и что язык, числовые символы и геометрия представляют собой первые коллективные практики. См.: Staal F. Rules without Meaning: Ritual, Mantras, and the Human Sciences. New York: Peter Lang, 1989. P. 71
71
Zellini P. La matematica degli dei e gli algoritmi degli uomini/ Milano: Adelphi, 2016. P. 41. (The Mathematics of the Gods and the Algorithms of Men. London: Penguin, 2020.)
72
Plofker K. Mathematics in India // The Mathematics of Egypt, Mesopotamia, China, India, and Islam. Victor Katz (ed.). Princeton, NJ: Princeton University Press, 2007.
73
Об исследовании передачи знаний и технологий в древности см.: Renn J. (ed.). The Globalization of Knowledge in History, Princeton, NJ: Princeton University Press, 2020.
74
Разделение труда в Агничаяне также напоминает сложную оперативную цепь (chaine operatoire), которую французский антрополог Андре Леруа-Гуран выявил во многих родовых (изначально не иерархических, а спонтанных и кооперативных) практиках изготовления инструментов. См.: Sellet F. Chaine operatoire: The Concept and its Applications // Lithic Technology 18, nos. 1–2 (1993): 106–112.