Измерять и навязывать. Социальная история искусственного интеллекта
Шрифт:
Агничаяна – уникальный артефакт в истории человеческой цивилизации: это самый древний задокументированный ритуал, который практикуется по сей день, хотя из-за сложности и проводится лишь несколько раз в столетие [75] . На протяжении тысячелетий с его помощью передавались и сохранялись сложные парадигмы знания, и благодаря комбинаторному механизму Агничаяны этот ритуал можно определить как первичный пример алгоритмической культуры. Что же позволяет интерпретировать как алгоритм столь древний ритуал? Согласно
75
Последние ритуалы прошли в 1955, 1975 (церемония задокументирована Фрицем Сталем) и 2011 годах.
76
См. также: Chabert J.-L. (ed.). A History of Algorithms: From the Pebble to the Microchip. Berlin: Springer, 1999. P. 2. (Chabert J.-L. Histoire d’algorithmes: Du caillou a la puce. Paris: Belin, 1994. P. 6.) «Алгоритм – это конечная последовательность правил, применяемая в определенном порядке к конечному набору данных для получения за конечное число шагов определенного результата вне зависимости от данных». Перевод мой: французский оригинал дает более точное определение, поскольку в английском издании отсутствует оборот «вне зависимости от данных».
77
Sriram M. S. Algorithms in Indian Mathematics // Contributions to the History of Indian Mathematics. Gurgaon: Hindustan Book Agency, 2005. P. 153–182.
Так, итальянский математик Паоло Целлини утверждает, что ритуал Агничаяны свидетельствует о более сложной технике, чем следование жесткому правилу, а именно – об эвристическом методе пошаговой аппроксимации. Известно, что ведическая математика раньше, чем это произошло у других цивилизаций, познакомилась с бесконечно большими и бесконечно малыми числами. В древних сутрах перемножались огромные позиционные числа индуистской системы счета для охвата необъятных просторов вселенной (мыслительное упражнение, которое невозможно себе представить, например, в аддитивных шумерских, греческих и римских системах счисления). Ведическая математика также была знакома с иррациональными числами, например квадратным корнем, который во многих случаях (например, ?2) можно рассчитать только приблизительно. В мантрах шульба-сутр пропеваются самые древние (и доскональные) объяснения вычислительных
78
Zellini. La matematica degli dei, 51. Спорная, но влиятельная история исчислений, см.: Cohen H. Das Prinzip der Infinitesimal-Methode und seine Geschichte: Ein Kapitel zur Grundlegung der Erkenntniskritik (1883).
Некоторым прочтение древних культур через парадигму новейших технологий Кремниевой долины, как и изучение математической составляющей религиозных ритуалов в эпоху оголтелого национализма, может показаться актом незаконного присвоения. Однако утверждать, что абстрактные техники познания и искусственные метаязыки безраздельно принадлежат современному индустриальному Западу, исторически неверно. Подобное утверждение – акт скрытого эпистемического колониализма по отношению к культурам других эпох и регионов [79] . Альтернативные формы вычислений, лежащие вне гегемонии Глобального севера и присущего ему режиму экстрактивизма знаний, получили признание и изучаются благодаря вкладу этноматематики, деколониальных исследований, а также истории науки и техники. Алгоритмами из-за их роли в компьютерном программировании обычно считают абстрактное применение сложных наборов правил. В этой книге я, напротив, утверждаю, что все алгоритмы, включая сложные алгоритмы искусственного интеллекта и машинного обучения, берут начало в общественной и материальной деятельности. Алгоритмическое мышление и алгоритмические практики, широко понимаемые как решение задач на основе правил, представляют собой часть всех культур и цивилизаций.
79
Историк математики Сентил Бабу пишет: «До сих пор специалисты по истории математики в Индии в основном работали с корпусом текстов на санскрите… Индология признала и канонизировала только благородную санскритскую традицию. Знания многих практиков математики стали невидимыми». Babu S. Mathematics and Society: Numbers and Measures in Early Modern South India. Oxford: Oxford University Press, 2022. P. 2–5. См. также: Babu S. Indigenous Traditions and the Colonial Encounter: A Historical Perspective on Mathematics Education in India // Ramanujam and Subramaniam, Mathematics Education in India.
Конец ознакомительного фрагмента.