Как нас обманывают органы чувств
Шрифт:
Обычный человек может ненадолго проникнуть в цветной мир полуахроматопсиков с помощью Транскраниальной магнитной стимуляции (ТМС). ТМС вызывается сильным магнитом, расположенным близко к голове, чье магнитное поле направлено либо на усиление, либо на ослабление активности в близлежащих областях мозга. Если ТМС уменьшает активность в V4 левого полушария, то у человека пропадают цвета в правой половине мира: если он смотрит прямо на красное яблоко, правая половина яблока выцветает до серого {17} . Выключите ТМС – и красный цвет снова наполнит правую половину яблока. Если стимулировать ТМС поле V4, то человеку привидятся «хроматофены» – цветные круги и гало {18} . С помощью ТМС вы можете наполнить сознание цветами или выкачать их из сознания.
17
О. Сакс «Антрополог на Марсе».
18
Там же; Zeki, S. 1993. A Vision of the Brain (Boston: Blackwell Scientific Publications), 279.
Активность в участке мозга, называемом постцентральной
19
Penfield, W., and Boldrey, E. 1937. “Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation,” Brain 60(4): 389–443.
20
В.С. Рамачандран «Фантомы мозга».
Многие сегодняшние эксперименты продолжают охоту за «нейронными коррелятами сознания» или НКС {21} . Этой охоте помогают разнообразные технологии измерения нейронной активности. Например, функциональная магнитно-резонансная томография (фМРТ) отслеживает нейронную активность, измеряя мозговой кровоток: нейронная активность, как и мышечная активность, требует большего притока крови, чтобы удовлетворить потребность в дополнительной энергии и кислороде. Электроэнцефалография (ЭЭГ), используя электроды на поверхности кожи головы, отслеживает нейронную активность, измеряя создаваемые ею малейшие колебания напряжения. Магнитоэнцефалография (МЭГ) отслеживает нейронную активность, измеряя малейшие колебания магнитных полей. Микроэлектроды способны регистрировать одиночные сигналы, называемые пиками или потенциалами действия, отдельных нейронов или их небольших групп. Оптогенетики используют свет различных цветов, чтобы контролировать и отслеживать активность нейронов, которые генетически сконструировали, чтобы реагировать на определенный цвет.
21
Chalmers, D. 1998. “What is a neural correlate of consciousness?” in T. Metzinger, ed., Neural correlates of consciousness: Empirical and conceptual questions (Cambridge, MA: MIT Press), 17–40; Koch, C. 2004. The Quest for Consciousness: A Neurobiological Approach (Englewood, CO: Roberts & Company Publishers).
Стратегия охоты за НКС имеет смысл. Если мы хотим теорию, которая свяжет нейроны и сознание и у нас нет убедительных идей, тогда мы можем начать с поиска взаимоотношений между ними. Изучая эти отношения, мы можем открыть алгоритм, который включит концептуальную лампочку. Путь от взаимоотношений к причинно-следственной связи, несомненно, полон подводных камней: если на железнодорожной платформе собирается толпа, значит скоро придет поезд {22} . Но не толпа заставляет поезд прибывать. Связь между толпами и поездами создает нечто другое – расписание поездов.
22
Больше головоломок про причинно-следственные связи можно найти у Beebee, H., Hitchcock, C., and Menzies, P., eds. 2009. The Oxford Handbook of Causation (Oxford, UK: Oxford University Press).
НКС являются ключевыми данными для теории сознания. Такая теория должна выполнять две задачи. Она должна очертить границу между сознательным и бессознательным, и она должна объяснить источник и широкое разнообразие наших переживаний: вкус лимона, боязнь пауков, радость открытия.
Для более простой (однако непростой) задачи разграничения сознательного и бессознательного нам надо знать, как мозговая активность одного отличается от другого. Здесь есть любопытные данные. Например, в нормальном сознании нейронная активность не беспорядочна, но и не слишком стабильна, а находится в балансе, как опытный пеший турист, который не порхает с места на место, но и не топчется на одном пятачке, а вдумчиво исследует территорию. Пропофол, индуцирующий общую анестезию, делает нейронную активность медлительно стабильной {23} .
23
Tagliazucchi, E., Chialvo, D. R., Siniatchkin, M., Amico, E., Brichant, J-F., Bonhomme, V., Noirhomme, Q., Laufs, H., and Laureys, S. 2016. “Large-scale signatures of unconsciousness are consistent with a departure from critical dynamics,” Journal of the Royal Society, Interface 13: 20151027.
Для сложного случая специфических переживаний – вкус шоколада или боязнь пауков – мы хотим найти крепкую связь между нейронной активностью и каждым переживанием. Но что значит «крепкую»? Это нелегко выразить точно. Многие исследователи предполагают, что это минимальная нейронная активность, которой при правильных условиях достаточно, чтобы переживание состоялось {24} . Они ищут эту минимальную активность методом сравнительного анализа – сравнивают, как меняется нейронная активность, когда меняется переживание. Например, если вы посмотрите на куб Неккера на рис. 1, у вас будет два разных переживания. Изменение нейронной активности, отмечающее ваше переключение между переживаниями, может и быть НКС для вашего восприятия куба. Ловкий трюк этого эксперимента состоит в том, что ваше переживание переключается, но изображение
24
Chalmers, D. 1998. “What is a neural correlate of consciousness?” in T. Metzinger, ed., Neural correlates of consciousness: Empirical and conceptual questions (Cambridge, MA: MIT Press), 17–40; Koch, C. 2004. The Quest for Consciousness: A Neurobiological Approach (Englewood, CO: Roberts & Company Publishers).
25
Aru, J., Bachmann, T., Singer, W., and Melloni, L. 2012. “Distilling the neural correlates of consciousness,” Neuroscience and Behavioral Reviews 36: 737–46.
Рис. 1. Куб Неккера. Если посмотреть в центр куба, то иногда мы видим впереди грань А, а иногда грань В.
НКС важны для теории, а также для практики. Арахнофобия – чрезмерная боязнь пауков – связана с активностью в миндалевидном теле. Стимуляция этого страха и его НКС в миндалевидном теле избавляет от них обоих. Мерел Киндт, психотерапевт из Нидерландов, для лечения арахнофобии сначала просит пациента дотронуться до живого тарантула, таким образом активируя фобию и ее НКС. Затем она дает пациенту 40 мг пропранолола, бета-адреноблокатора, который препятствует НКС отложиться в памяти. Когда пациент возвращается на следующий день, фобия пропадает {26} . Эта терапия имеет потенциал для лечения других фобий, а также посттравматического стрессового расстройства.
26
Kindt, M., Soeter, M., and Vervliet, B. 2009. “Beyond extinction: Erasing human fear responses and preventing the return of fear,” Nature Neuroscience 12(3): 256–58; Soeter, M., and Kindt, M. 2015. “An abrupt transformation of phobic behavior after a post-retrieval amnesic agent,” Biological Psychiatry 78: 880–86.
Другой пример использует оптогенетику, биологическую технологию, которая при помощи света контролирует генетически модифицированные нейроны. С помощью оптогенетики теперь возможно щелчком выключателя активировать НКС для позитивного ощущения, а затем так же быстро выключить его. Кристин Денни из Колумбийского университета реализовала этот замечательный трюк, используя генетически модифицированную мышь с геном водоросли, который кодирует чувствительный к свету белок {27} . В природе водоросль с помощью этого белка реагирует на свет. В модифицированной мыши ген тихо прячется, никак себя не проявляя, пока не введут препарат тамоксифен. Тогда на короткое время любые нейроны, возбужденные током, активируют ген и встраивают белок в свои мембраны. Денни помещает подопытную мышь в среду, которая ей нравится: мягкую, полутемную, с укромными местечками. Мышь счастливо исследует идиллическое место, и все нейроны, задействованные в создании счастливого НКС, встраивают белок в свои мембраны. Затем Денни может запустить НКС счастья при помощи оптоволокна, посылающего в мозг мыши цветной свет, активирующий белок. Даже если мышь сидит в страшном месте – твердом, ярком, где негде спрятаться, – она ощущает себя в благодатном месте, пока не выключат оптоволокно. Тогда мышь замирает от страха. Включите свет снова – и снова она счастливо прихорашивается и исследует.
27
Denny, C. A., et al. 2014. “Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis,” Neuron 83: 189–201; Cazzulino, A. S., Martinez, R., Tomm, N. K., and Denny, C. A. 2016. “Improved specificity of hippocampal memory trace labeling,” Hippocampus, doi: 10.1002/hipo.22556.
Это поразительные применения НКС. И также поразительна наша полнейшая неспособность понять отношения между НКС и сознанием. У нас нет никаких научных теорий, которые объясняли бы, как мозговая активность – или компьютерная активность, или любой другой вид физической активности – может обуславливать, быть или как-то порождать сознательный опыт. У нас нет ни одной хотя бы мало-мальски убедительной идеи. Если рассматривать не только мозговую активность, но также сложные взаимодействия между мозгами, телами и окружающим миром, мы все равно провалимся. Мы в тупике. Наш полный провал заставляет некоторых называть это «трудной задачей» сознания или просто «тайной» {28} . Нам известно гораздо больше нейронаук, чем Гексли в 1869 году. И все же каждая научная теория, которая пытается вывести сознание из сложных взаимодействий мозга, тела и окружающего мира, всегда обращается к чуду – именно в той критической точке, где опыт созревает из сложности. Эти теории – машины Годберга, которым не хватает ключевого домино и требуется незаметный толчок, чтобы довести дело до конца.
28
Blackmore, S. 2010. Consciousness: An Introduction (New York: Routledge); Д. Чалмерс «Сознающий ум. В поисках фундаментальной теории»; Revonsuo, A. 2010. Consciousness: The Science of Subjectivity (New York: Psychology Press).
Чего же мы хотим от научной теории сознания? Взять, к примеру, вкус базилика против воя сирен. В случае с теорией, которая предполагает, что сознательный опыт обусловлен активностью мозга, мы хотим видеть математические законы или принципы, которые четко определяли бы, какая мозговая активность обуславливает сознательный опыт вкуса базилика, почему эта активность не обуславливает, скажем, слухового опыта воя сирен и как эта активность должна измениться, чтобы опыт вкуса базилика трансформировался, скажем, во вкус розмарина. Эти законы или принципы должны применяться ко всем видам активности либо, в противном случае, четко объяснять, почему разные виды требуют разных законов. Пока таких законов – и даже правдоподобных идей на их счет – у нас нет.
Злыднев Мир. Дилогия
Злыднев мир
Фантастика:
фэнтези
рейтинг книги
Фараон
1. Фараон
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Душелов. Том 2
2. Внутренние демоны
Фантастика:
фэнтези
боевая фантастика
аниме
рейтинг книги
Север и Юг. Великая сага. Компиляция. Книги 1-3
Приключения:
исторические приключения
рейтинг книги
Архил...? 4
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
рейтинг книги
Мститель из Стали
Фантастика:
героическая фантастика
рейтинг книги
Развод с генералом драконов
Фантастика:
фэнтези
рейтинг книги
Возвышение Меркурия. Книга 15
15. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
рейтинг книги
Возвышение Меркурия. Книга 16
16. Меркурий
Фантастика:
попаданцы
аниме
рейтинг книги
Отмороженный 11.0
11. Отмороженный
Фантастика:
боевая фантастика
рпг
попаданцы
фантастика: прочее
фэнтези
рейтинг книги
Отверженный VII: Долг
7. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
рейтинг книги
Прометей: каменный век II
2. Прометей
Фантастика:
альтернативная история
рейтинг книги
Душелов. Том 3
3. Внутренние демоны
Фантастика:
альтернативная история
аниме
фэнтези
ранобэ
хентай
рейтинг книги
Адептус Астартес: Омнибус. Том I
Warhammer 40000
Фантастика:
боевая фантастика
рейтинг книги
