Чтение онлайн

на главную - закладки

Жанры

Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей
Шрифт:

Так вот, на картинке изображены лучи света, падающие на поверхность стекла. Для простоты положим, что они падают перпендикулярно к поверхности. В таком случае они свободно проходят через стекло (немного, правда, отражаются, но это не влияет на тот путь, по которому идут лучи света) и попадают дальше нам в зрачок.

Но та часть света, тот луч, который упал на царапину, попадает на наклонную поверхность, то есть падает под углом к стеклу. Мы уже разбирали, что при изменении угла падения траектория луча изменяется, он отклоняется в сторону!

Значит, часть света будет проходить через целые участки стекла и создавать цельную картинку, а некоторая часть, попадающая на царапины,

будет отклоняться, рассеиваться, портить изображение!

Поэтому настоящую рабочую оптику (стекла телескопов, биноклей, зрительных приборов) протирают очень аккуратно, специальными составами, часто спиртом. При этом используют мягчайшие кисточки. Главное, при протирке не нажимать сильно, чтобы, даже если пылинка и попала на поверхность, ее смыло потоком жидкости. Потому что иначе она «проскребет» поверхность и загубит технику!

Итак, каждая царапина работает как призма, отклоняющая лучи!

89

Полное внутреннее отражение, или Что такое оптический кабель

Для опыта нам потребуется: кусок стекла, лазерная указка или маленький фонарик.

В современных компьютерных системах устройства между собой «общаются» по оптическим кабелям. Световые сигналы летят по гибкому шнуру, неся информацию из одной точки в другую. При этом, как ни изгибай кабель, свет не «выскакивает» из шнура, а следует по любой извилистой траектории.

Как этого добиваются?

Мы знаем, что лучи поворачивают в сторону, если падают под углом на поверхность стекла (или другого прозрачного вещества). Причем этот угол зависит от разницы скорости движения света между тем веществом, откуда прилетел луч, и тем, в которое он входит.

Давайте рассмотрим картинку.

Луч, обозначенный цифрой 1, идет внутри стекла ровно перпендикулярно к поверхности. Он проходит, не изменяя направления. Луч 2 – немножко под углом. Он отклоняется немного в сторону. Луч 3 отклоняется еще сильнее… Так, если угол изменяется, то постепенно выходящий луч все ближе подходит к самой поверхности стекла. Наступает такой момент, что луч достигает критического угла и его продолжение, выходящее из стекла, уже практически «скользит» по поверхности. На нашем рисунке это черный луч 5.

Все! Все остальные лучи, идущие под еще большими углами, будут отражаться от внутренней поверхности стекла и уходить «внутрь»!

Посмотрим, что будет, если луч света войдет в тонкую стеклянную трубку или лист стекла «с торца».

Луч немножко изменит свой угол и пройдет через стекло некоторое расстояние, после чего наткнется на внутреннюю поверхность стекла. Он отразится внутрь и побежит, пока снова не наткнется на поверхность и тоже в соответствии с законами физики отразится внутрь, только уже в другую сторону! И так будет продолжаться, пока световой луч не затухнет. Понятно, что свет немножко «гасится», ослабляет свое свечение с расстоянием. Поэтому рано или поздно, конечно, свет затухнет. Но до тех пор так и будет бежать вперед и вперед.

Те, кто разрабатывал системы связи для передачи информации, воспользовались этим физическим законом и сделали очень простую (на первый взгляд) вещь: создали кабель, состоящий из огромного количества тонких и гибких стеклянных трубочек. Самое главное (и самое сложное в производстве

таких кабелей), что каждая трубочка на обоих концах кабеля находится точно в том же месте и в начале, и в конце. Поэтому изображение не искажается. Чтобы пояснить, посмотрим на следующую картинку. Предположим, что мы положили в ряд пять трубочек, причем они не «перепутываются», а идут, изгибаясь, рядом до самого конца. Длина у них одинаковая. Будем светить разным светом (красным, зеленым, желтым и т. д.) в каждую из трубочек с одной стороны, в начале.

В конце каждая трубочка засветится тем светом, которым в него посветили в начале! И мы увидим точно такую же картинку, что и передали.

Если эти ряды трубочек положить друг на друга и создать «квадратик», то можно уже создавать целые картинки, как в телевизоре. Вот и вся хитрость. Именно так устроены современные оптические кабели, которые связывают компьютеры и другие устройства.

* * *

А как увидеть это своими глазами? Для этого проделаем простой опыт. Возьмем любой кусок стекла, например оконного. И в темноте посветим узким лучом света с торца. Лучше всего для этого подходят лазерные указки, которые продаются в любом ларьке. Или даже маленький фонарик. Посмотрите на следующую фотографию.

Видно, как светится торец куска стекла, – это я свечу в него фонариком. Поверхность же стекла практически не светится. Свет не выходит наружу. На другой фотографии видно, что я свечу фонариком слева под довольно большим углом в торец стекла. Поскольку фонарик шире, чем стекло, верхняя его часть светит прямо на поверхность сверху. И луч освещает первую треть стекла. Потом идет темный кусок. Но вдруг мы видим, что слева из торца вырывается свет! Эта та часть луча, которая от фонарика вошла в торец и пробежала, отражаясь внутри от стенок, до самого выхода из стекла!

На фото: светится торец стекла, верхняя часть существенно темнее. Свет распространяется внутри.

На фотографии видно, как свет проходит лучом внутри стекла и вырывается наружу в дальнем торце. Подставкой служит ноутбук IBM – у него прекрасная черная поверхность, как раз для съемок.

90

Точка концентрации напряжений, или Как остановить трещину на стекле

Для опыта нам потребуются: две длинные палки.

Ну, раз уж начали про стекло, давайте подумаем над занятным вопросом. Часто бывает, что по стеклу начинает бежать трещина. Чаще всего это заметно на лобовых стеклах автомобилей. Такая трещина, однажды начавшись, начинает сама собой расти, удлиняться, и рано или поздно стекло лопается пополам.

Почему так происходит? Почему растет трещина в стекле?

Мы помним уже из закона Гука, что если к предмету прикладывается сила, то предмет сжимается или растягивается. На резиновом шарике это хорошо видно. Но и, казалось бы, твердые предметы, такие как дерево, стекло, камень, тоже сжимаются или растягиваются. Только сдвиги эти настолько маленькие, что их незаметно на глаз.

Поделиться:
Популярные книги

Темный Лекарь 2

Токсик Саша
2. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 2

Государь

Кулаков Алексей Иванович
3. Рюрикова кровь
Фантастика:
мистика
альтернативная история
историческое фэнтези
6.25
рейтинг книги
Государь

Каторжник

Шимохин Дмитрий
1. Подкидыш
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Каторжник

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Имя нам Легион. Том 8

Дорничев Дмитрий
8. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 8

Курсант: Назад в СССР 4

Дамиров Рафаэль
4. Курсант
Фантастика:
попаданцы
альтернативная история
7.76
рейтинг книги
Курсант: Назад в СССР 4

Студиозус 2

Шмаков Алексей Семенович
4. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус 2

Хозяйка расцветающего поместья

Шнейдер Наталья
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Хозяйка расцветающего поместья

Кадры решают все

Злотников Роман Валерьевич
2. Элита элит
Фантастика:
боевая фантастика
попаданцы
альтернативная история
8.09
рейтинг книги
Кадры решают все

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Камень. Книга 3

Минин Станислав
3. Камень
Фантастика:
фэнтези
боевая фантастика
8.58
рейтинг книги
Камень. Книга 3

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Наваждение генерала драконов

Лунёва Мария
3. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Наваждение генерала драконов

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III