Как же называется эта книга
Шрифт:
268в.
Предположим, что все острова, о которых говорится в предыдущих задачах, допускают построение (интуитивно я убежден в том, что построить эти острова можно, хотя и не могу этого доказать). Какова минимальная численность населения каждого острова? Можете ли вы доказать, что при меньшей численности населения какое-то из условий будет нарушено?
В. ТЕОРЕМА ГЕДЕЛЯ
269. Полна ли эта система?
У одного логика хранится "Книга высказываний". Страницы книги перенумерованы последовательными натуральными числами, и на каждой странице записано ровно одно высказывание. Ни одно высказывание не занимает
Разумеется, каждое высказывание, внесенное в "Книгу высказываний", либо истинно, либо ложно. Некоторые из истинных высказываний настолько очевидны логику, у которого хранится книга, что он принял их за аксиомы своей логической системы. Помимо аксиом в эту систему входят правила вывода, позволяющие доказывать истинные высказывания, сводя их к ранее доказанным истинным высказываниям и аксиомам, и опровергать ложные высказывания. Логик совершенно уверен в своей непротиворечивости (то есть в том, что всякое высказывание, доказуемое в его системе, действительно истинно, а каждое высказывание, опровергаемое в его системе, действительно ложно), но сомневается в ее полноте (то есть в том, что в системе все истинные высказывания доказуемы, а все ложные опровержимы). Все ли истинные высказывания доказуемы в его системе? Все ли ложные высказывания опровержимы в его системе? На эти вопросы логик хотел бы получить ответ.
У нашего логика помимо "Книги высказываний" есть еще "Книга множеств". Ее страницы также перенумерованы последовательными натуральными числами, и на каждой странице приведено описание некоторого множества чисел.
(Под числами мы понимаем здесь целые положительные, или натуральные, числа 1,2,...,n,....) Любое множество, внесенное в "Книгу множеств", мы будем называть учтенным множеством.
Если задано натуральное число n то может случиться, что множество, записанное на n-й странице "Книги множеств", содержит число n. В этом случае мы будем называть n экстраординарным числом.
(% в этом абзаце где-то есть опечатка - прим. OCR %)
Кроме того, назовем число h сопряженным с числом n, если в высказывании, записанном на n-й странице "Книги высказываний", утверждается, что n - экстраординарное число.
Известно, что выполняются следующие четыре условия:
E1: Множество номеров всех доказуемых высказываний - учтенное множество.
E2: Множество номеров всех опровержимых высказываний - учтенное множество.
C: Для любого учтенного множества A множество ~A, состоящее из всех чисел, которые не принадлежат множеству A, - учтенное множество.
H: Для любого учтенного множества A существует другое учтенное множество B, такое, что каждое число из B имеет сопряженное, принадлежащее A, и каждое число, не принадлежащее B, имеет сопряженное, не принадлежащее A.
Этих четырех условий достаточно, чтобы ответить на вопросы логика: "Каждое ли истинное высказывание доказуемо в его системе? Каждое ли ложное высказывание опровержимо в его системе?" Кроме того, можно определить, является ли множество номеров всех истинных высказываний учтенным множеством, а также является ли учтенным множеством множество номеров всех ложных высказываний.
Как это сделать?
Решение. Перед вами не что иное, как
Понятие множества, записанного на странице с заданным номером, играет роль клуба, названного по имени одного из обитателей острова. Экстраординарные числа - это не что иное, как номинабельные члены общины, а сопряженные числа являются аналогами друзей.
Чтобы решить задачу, прежде всего необходимо доказать аналог условия G.
Условие G. Для любого учтенного множества A найдется высказывание, истинное в том и только в том случае, если его номер принадлежит A.
Чтобы доказать условие G, выберем любое учтенное множество A. Пусть B - множество, заданное условием H, n - номер страницы, на котором записано B в "Книге множеств". По условию H если число n принадлежит B, то у него имеется сопряженное число h, принадлежащее множеству A, а если n не принадлежит B то у него есть сопряженное число h, не принадлежащее A. Мы утверждаем, что высказывание X на h-й странице и есть то самое высказывание, которое требуется найти.
Высказывание X утверждает, что n - экстраординарное число, то есть что n принадлежит множеству B (так как множество B занесено на n-ю страницу "Книги множеств").
Если X истинно, то число n действительно принадлежит множеству B. Следовательно, h принадлежит A. Итак, если X истинно, то его номер (число h) принадлежит множеству A.
Предположим теперь, что X ложно. Тогда число n не принадлежит B. Следовательно, сопряженное число h не принадлежит A. Итак, X истинно в том и только в том случае, если его номер принадлежит множеству A.
После того как условие G доказано, ответить на вопросы логика уже не трудно. Дано, что множество номеров A всех доказуемых высказываний учтенное множество.
Следовательно, по условию C множество ~A всех чисел, не совпадающих с номерами доказуемых высказываний, также учтенное множество. Значит (по условию G), существует высказывание X, которое истинно в том и только в том случае, если его номер принадлежит множеству ~A. Но если номер высказывания X принадлежит множеству ~A, то он не принадлежит множеству A, то есть высказывание X недоказуемо (так как множество A состоит из номеров доказуемых высказываний). Итак, X истинно в том и только в том случае, если X недоказуемо. Это означает, что либо X истинно и недоказуемо, либо X ложно и доказуемо. По условиям задачи ни одно ложное высказывание недоказуемо в системе. Следовательно, X должно быть истинным и недоказуемым в системе.
Построим теперь ложное высказывание, которое неопровержимо в системе. Пусть A - множество всех опровержимых высказываний. Воспользовавшись условием G, мы получим высказывание Y, истинное в том и только в том случае, если его номер совпадает с номером какого-нибудь опровержимого высказывания, то есть Y истинно в том и только в том случае, если Y опровержимо. Это означает, что Y либо истинно и опровержимо, либо ложно и неопровержимо. Первая альтернатива отпадает, так как опровержимое высказывание не может быть истинным. Следовательно, Y должно быть ложным, но неопровержимым в системе.