Кибернетика или управление и связь в животном и машине
Шрифт:
Рассмотренный случай служит примером так называемых релаксационных колебаний, когда система уравнений, инвариантных относительно сдвига во времени, дает решение, периодическое во времени или соответствующее некоторому обобщенному понятию периодичности и обладающее определенной амплитудой и частотой, но неопределенной фазой. В данном случае частота колебания системы близка к частоте некоторой слабо связанной, приблизительно линейной части системы. Б. ван дер Поль, один из главных авторитетов по релаксационным колебаниям, нашел, что это не всегда так и что возможны релаксационные колебания, у которых преобладающая частота далека от частоты линейных колебаний любой части системы. Можно привести следующий пример. Струя газа течет в камеру, сообщающуюся с наружным воздухом. В камере горит сигнальный огонь. Когда концентрация
Вообще говоря, нелинейные системы уравнений трудно решать. Существует, однако, случай, легко поддающийся исследованию, когда система лишь немного отличается от линейной, и члены, составляющие [c.179] различие, изменяются так медленно, что их можно считать, по существу, постоянными за период колебания. В этом случае нелинейная система может исследоваться так, как если бы это была линейная система с медленно изменяющимися параметрами. Системы, допускающие подобный подход, носят название систем с вековыми возмущениями; теория систем с вековыми возмущениями играет важнейшую роль в гравитационной астрономии.
Кажется вероятным, что некоторые виды физиологических треморов можно рассматривать приближенно как линейные системы с вековыми возмущениями. На такой системе легко понять, почему амплитуда стационарного колебания может оказаться столь же определенной, как и частота. Пусть одним из элементов такой системы будет усилитель, коэффициент усиления которого уменьшается по мере того, как увеличивается некоторое долговременное среднее входного сигнала. Тогда с ростом колебаний системы коэффициент усиления может упасть, пока не будет достигнуто состояние равновесия.
Нелинейные системы релаксационных колебаний исследовались в ряде случаев методами, которые разработали Хилл и Пуанкаре [152] . Классическими примерами являются случаи, когда системы описываются уравнениями дифференциального характера, особенно если эти дифференциальные уравнения низшего порядка. Насколько мне известно, не существует какого-либо сравнимого исследования соответствующих интегральных уравнений, когда будущее системы зависит от всего ее прошлого. Однако нетрудно представить себе, какой вид должна иметь такая теория, особенно если мы ищем лишь периодические решения. В этом случае небольшое изменение коэффициентов уравнения должно вызывать небольшое и, следовательно, приблизительно линейное изменение уравнений движения.
152
Poincar'e H. Les M'ethodes Nouvelles de la M'ecanique C'eleste. — Paris: Gauthier-Villars et fils., 1892—1899.
Например, пусть Op[f(t)] — функция от f, полученная нелинейной операцией из f(t) и подвергаемая сдвигу. Тогда вариация Op[f(t)] функции Op[f(t)], соответствующая вариационному изменению f(t) функции f(t) и известному изменению динамики системы, [c.180] является линейной, но неоднородной относительно f(t), хотя она нелинейна относительно f(t). Если теперь мы знаем некоторое решение f(t) уравнения
Op [f (t)] = 0 (4.55)
и
и сумма f(t)+f(t) также периодическая, имея вид
то
Все коэффициенты в линейных уравнениях для f(n) разлагаются в ряд по еint, поскольку f(t) сама разложима в такой ряд. В результате получим бесконечную систему линейных неоднородных уравнений относительно an+an, и , и она может оказаться разрешимой методами Хилла. В этом случае можно, по крайней мере, представить, что, отправляясь от линейного (неоднородного) уравнения и понемногу снимая ограничения, мы можем прийти к решению весьма общей нелинейной задачи о релаксационных колебаниях. Однако это дело будущего.
Системы управления с обратной связью, рассмотренные в этой главе, и компенсационные системы, рассмотренные в предыдущей, до некоторой степени конкурируют между собой. Те и другие служат для приведения сложных отношений между входом и выходом эффектов к виду, близкому к простой пропорциональности. Как мы видели, система обратной связи дает большее: ее поведение сравнительно независимо от характеристики применяемого эффектора и изменений этой характеристики. Какой из двух методов управления лучше, зависит, следовательно, от того, насколько постоянна характеристика эффектора. Естественно предположить, [c.181] что могут быть случаи, когда выгодно сочетать оба метода. Для этого существуют разные способы.
Один из простейших показан на рис. 4. В этом случае всю систему обратной связи можно рассматривать как расширенный эффектор, и здесь не возникает ничего нового, исключая то, что компенсатор должен компенсировать величину, которая в некотором смысле является средней характеристикой системы обратной связи.
Рис. 4
Другая схема изображена на рис. 5. Здесь компенсатор и эффектор соединены в один расширенный эффектор. Это, вообще говоря, приводит к изменению максимально допустимой обратной связи, и нелегко сказать, насколько значительно можно повысить этот уровень таким путем. С другой стороны, при том же уровне обратной связи работа системы совершенно явно улучшится. Если, например, эффектор имеет существенно запаздывающую характеристику, то компенсатор должен быть упреждающим, или предсказывающим, устройством, рассчитанным на статистический ансамбль входного сигнала. Обратная связь, которую [c.182] можно назвать упреждающей, будет стремиться ускорить действие эффектора.
Рис. 5
Обратные связи подобного рода, несомненно, присутствуют в рефлексах человека и животных. При охоте на уток мы стремимся свести к минимуму не ошибку направления ствола относительно действительного положения цели, а ошибку направления ствола относительно предугадываемого положения цели. Всякая система управления зенитным огнем должна решать такую же задачу. Условия устойчивости и эффективности упреждающих обратных связей нуждаются в гораздо более тщательном исследовании, чем до сего времени.