Чтение онлайн

на главную - закладки

Жанры

Кибернетика или управление и связь в животном и машине

Винер Норберт

Шрифт:

 

Рис. 1

[c.169]

Условие ограниченности функции А в любой правой полуплоскости указывает на то, что бесконечно удаленная точка не может быть внутренней точкой. Она может быть граничной точкой, хотя существуют весьма определенные ограничения на тип граничной точки, которой может быть бесконечно удаленная точка. Эти ограничения касаются «толщины» множества внутренних точек, простирающихся к бесконечности.

Мы переходим теперь к математической формулировке задачи о линейной обратной связи. Пусть структурная (не электрическая!) схема нашей системы имеет вид, как на рис. 2.

 

Рис. 2

Здесь

входной сигнал двигателя, обозначенный через Y, равен разности между первоначальным входным сигналом Х и выходным сигналом умножителя, умножающего выходную мощность AY двигателя на коэффициент . Тогда

 

(4.18)

и

 

, (4.19)

откуда выходной сигнал двигателя

 

. (4.20)

Следовательно, оператор, создаваемый всем механизмом обратной связи, равен A/(1+ A). Он будет бесконечно большим тогда и только тогда, когда А= —1/. Кривая (4.17) для этого нового оператора будет иметь вид [c.170]

 

, (4.21)

и будет внутренней точкой этой кривой тогда и только тогда, когда —1/ является внутренней точкой первоначальной кривой (4.17) [149] .

В этом случае обратная связь с коэффициентом , несомненно, произведет нечто катастрофическое, и эта катастрофа практически выразится в том, что система придет в неограниченные, нарастающие колебания. Если же точка —1/ внешняя, то можно показать, что никаких неприятностей не будет, и обратная связь будет устойчивой. Случай, когда точка —1/ лежит на эффективной границе, требует особого исследования. В большинстве случаев система может прийти при этом в колебание с амплитудой, которая не будет увеличиваться.

149

Речь идет о точке (—1/, 0) на плоскости (u, v). — Прим. ред.

Пожалуй, полезно рассмотреть несколько операторов А и допустимые для них диапазоны обратной связи. Мы будем рассматривать не только операции (4.02), но и их пределы, предполагая, что к последним применимы те же рассуждения.

Если оператор А соответствует дифференциальному оператору, то A(z)=z; тогда при изменении y от — до точно так же изменяется и А (y), и внутренние точки являются внутренними точками правой полуплоскости. Точка —1/ всегда является внешней, и любая степень обратной связи возможна.

Если

 

, (4.22)

то кривая (4.17) принимает следующий вид:

 

, (4.23)

или

 

,
, (4.24)

что можно также записать в виде

 

(4.25)

[c.171]

Таким образом, наша кривая есть окружность с радиусом 1/2 и центром в точке (1/2, 0). Обход ее совершается по часовой стрелке, и внутренними будут те точки, которые обычно считаются внутренними. В этом случае обратная связь также неограниченна, ибо точка —1/ всегда находится вне круга. Оператор a(t), соответствующий этому оператору А, будет равен

 

. (4.26)

Положим

теперь

 

, (4.27)

тогда (4.17) принимает вид

 

(4.28)

Или

 

,
(4.29)

что дает

 

(4.30)

или

 

(4.31)

Тогда

 

(4.32)

В полярных координатах при u = соs , v = sin получим

 

(4.33)

или

 

(4.34)

Иными словами, [c.172]

 

(4.35)

Можно показать, что оба эти уравнения изображают одну кривую — кардиоиду с вершиной в начале координат и острием, направленным вправо. Внутренняя область этой кривой не содержит точек отрицательной действительной оси; как и в предыдущем случае, допустимое усиление неограниченно. Оператор а(t) для этого случая имеет следующий вид:

 

(4.36)

Положим еще

 

(4.37)

Определим и , как в предыдущем случае. Тогда

 

(4.38)

Как в первом случае, отсюда получим

 

(4.39)

т. е.

 

(4.40)

Эта кривая имеет форму, показанную на рис. 3 [150] . Заштрихованная область изображает внутренние точки. Коэффициент обратной связи не может быть больше 1/8. Соответствующий оператор a(t) равен

150

Кривая 1/3=cos /3 называется кэлиевой кривой 6-го порядка (по имени английского математика А. Кэли). И кардиоида, и кэлиева кривая 6-го порядка суть частные случаи так называемых синус-спиралей. — Прим. ред.

 

(4.41)

 

Рис. 3

Наконец, пусть наш оператор, соответствующий A, представляет собой простую задержку на Т единиц [c.173] времени. Тогда

 

(4.42)

и

 

(4.43)

Кривая (4.17) в этом случае представляет собой единичную окружность с центром в начале координат, проходимую в направлении часовой стрелки со скоростью, равной единице. Внутренней областью кривой будет внутренняя область в обычном смысле, и предельная обратная связь равна 1.

Поделиться:
Популярные книги

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4

Тагу. Рассказы и повести

Чиковани Григол Самсонович
Проза:
советская классическая проза
5.00
рейтинг книги
Тагу. Рассказы и повести

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

В прятки с отчаянием

AnnysJuly
Детективы:
триллеры
7.00
рейтинг книги
В прятки с отчаянием

Вечный зов. Том I

Иванов Анатолий Степанович
Проза:
советская классическая проза
9.28
рейтинг книги
Вечный зов. Том I

Боярышня Дуняша

Меллер Юлия Викторовна
1. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Дуняша

Диверсант. Дилогия

Корчевский Юрий Григорьевич
Фантастика:
альтернативная история
8.17
рейтинг книги
Диверсант. Дилогия

Темный Лекарь 7

Токсик Саша
7. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.75
рейтинг книги
Темный Лекарь 7

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Гарем на шагоходе. Том 3

Гремлинов Гриша
3. Волк и его волчицы
Фантастика:
юмористическая фантастика
попаданцы
4.00
рейтинг книги
Гарем на шагоходе. Том 3

Миллионер против миллиардера

Тоцка Тала
4. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
5.25
рейтинг книги
Миллионер против миллиардера

Лолита

Набоков Владимир Владимирович
Проза:
классическая проза
современная проза
8.05
рейтинг книги
Лолита