Клеймо создателя
Шрифт:
Однозначность кода означает, что каждый триплет фрагмента полинуклеотида, именуемого геном, кодирует только одну аминокислоту. Продуктами кодирования являются не только аминокислоты, но и знаки пунктуации – знак начала кодирующей цепочки (гена), ATG, или AUG, называемые стартовыми кодонами, и знаки ее окончания – TAA (UAA), TAG (UAG) и TGA (UGA) или терминирующие (trm) стоп-кодоны (в таблице – буквы синего цвета в бесцветных ячейках). Начало генного продукта – это всегда аминокислота (метионин в данном случае), конец его – аминокислота, предшествующая стоп-кодону.
Еще одно свойство генетического кода – универсальность, означает, что все живущие на Земле существа – будь то РНК– или ДНК-вирус, слон, морковка, червь или человек – пользуются одним и тем же генетическим кодом. Немногочисленные отклонения от этого правила касаются лишь отдельных аминокислот и являются,
Небольшое число таких отклонений лишь подчеркивают седьмое из перечисляемых свойств кода – необычайная стабильность.
За этим свойством неизбежно должно стоять – и стоит – еще одно – столь же необычайная помехоустойчивость. Помехоустойчивость относится к двум наиболее важным свойствам кодируемых аминокислот – их размеру, который характеризуется объемом или массой молекулы, и их гидрофильности (и гидрофобности), которые определяют вторичную структуру полипептида. Замена третьего основания триплета, как правило, не влияет на эти свойства, замена второго более существенна и относится, по преимуществу, к гидрофильности аминокислоты или к ее гидрофобности, замена первого может оказаться роковой; она меняет размер кодируемой молекулы. Если подсчитать, сколько замен одного нуклеотида не меняет тип аминокислоты в соответствии с ее химическими свойствами (а такие замены аминокислот слабо сказываются на структуре и функциях белка) и сколько меняет, то отношение первых ко вторым будет близко к 2,25. Расчеты показывают, что существующий генетический код не является самым оптимальным вариантом кода по признаку помехоустойчивости, и специальными программами удается сгенерировать более устойчивые в этом отношении коды. Тем не менее, компьютерное моделирование демонстрирует вполне впечатляющую частоту кодов со сходной с существующим помехоустойчивостью – один на миллион. Даже при такой частоте число помехоустойчивых кодов еще достаточно велико, чтобы вызывать впечатление случайности выбора той версии, которая используется на Земле. А так и не достигнутый за миллиарды лет максимум помехоустойчивости генетического кода на нашей планете наводит на мысль о том, что его, скорее всего, определило некое единичное событие, после которого опять-таки некое ограничение фиксировало девятое свойство кода, отмеченное еще Френсисом Криком. Поскольку ни изощренные и длительные эксперименты, ни теория – во времена Крика – не показывали абсолютно никакого физико-химического соответствия между нуклеотидными триплетами и аминокислотами, он назвал не поддающийся изменениям в течение миллиардов лет генетический код замороженной случайностью. Замороженной – в том смысле, что сформировавшись, он уже не менялся. Случайностью – в том смысле, что он мог сформироваться каким угодно. А вот то, что он сформировался именно таким, каким мы его видим, и настолько удачно, что в дальнейшем мог уже и не меняться, придает ему, на первый взгляд, свойство чуда. На сегодняшний день оценка Крика – едва ли не самая убедительная гипотеза происхождения генетического кода. И все-таки, когда мы говорим «случайность», рассматривая формальные свойства кода (мы сделаем это позднее), не только физика и химия приходят нам в голову. Но и они (физика и химия) предлагают сегодня альтернативную замороженной случайности гипотезу, гипотезу «ключ-замок», основанную на экспериментальных данных, которые все же показывают определенное сродство отдельных аминокислот с отдельными РНК-последовательностями. Об этом – в конце книги.
…………………
«Номер» этой главы назван «инициалами» ее «главного героя» – Genetic Code. Автор хотел, однако, не только отметить их совпадение с принятым обозначением пары гуанин-цитозин (GC), но акцентировать комплементарность этой пары, которую в названии главы подчеркивает вторая комплементарная пара – аденин-тимин (АТ), символ которой (предлог at) обозначается на «компьютерном языке» знаком @. Если пару АТ встроить между G и C, вся четверка – GATC – оказывается упорядоченной по массе и зеркально симметричной по комплементарности относительно центра, отмеченного двумя короткими вертикалями. В составе двуцепочечной молекулы нуклеиновой кислоты пара GC демонстрирует сильное, S, взаимодействие, образуя три межнуклеотидных водородных связи CG (нижняя пара на рисунке), в то время, как пара АТ (верхняя часть рисунка) демонстрирует слабое, W, взаимодействие:
Результатом комплементарности пар оснований является первое правило Чаргаффа: число гуанинов (G) в двуцепочечной ДНК равно числу цитозинов (С), а число аденинов (А) равно числу тиминов (Т). Это правило стало одним из краеугольных камней открытия спиральной структуры этой молекулы, о чем можно прочитать в любом учебнике.
Позднее мы коротко коснемся и так называемого второго правила Чаргаффа, которое относится только к одной природной полинуклеотидной цепи. Существуют и некомплементарные взаимодействия пар оснований – «качающиеся» и хугстеновские (см. ниже). В природе все намного интереснее и богаче, чем в любом учебнике. Мы не можем обусловить начало жизни только формированием генетического кода (тогда ее дефиниция оказалась бы не слишком трудной задачей
Глава 11.
Механика генетического кодирования (XI)
Об этом можно прочитать в любом учебнике. И все же – чтобы облегчить понимание последующих рассуждений – позволим себе очень коротко остановиться на работе машины кодирования. Барбьери связывает формирование таких машин с возникновением молекул, названных им codemakers – термин, который мы выше перевели как декодеры.
Что это за молекулы? В тех случаях, когда генетическую информацию содержит ДНК (другие варианты мы не рассматриваем, поскольку они принципиально не отличаются от общей схемы), первой такой молекулой становится информационная или матричная РНК (иРНК или мРНК) – комплементарная копия отрезка той нити ДНК (минус—нити или Nonsense, N, «бессмысленной»), которая, в свою очередь, в двойной цепи комплементарна кодирующей, «смысловой» (Sense, S, то есть, содержащей ген) или плюс– нити. Между прочим, двунитевую структуру ДНК обозначают иногда не только как NS, но также – соответственно – как WC, чтобы подчеркнуть совпадающими порядками букв парадоксальный ум Джеймса Уотсона, не всеми с порога принимаемый и понимаемый. мРНК, как правило, содержит копию гена, которая, как правило же, начинается с триплета AUG, кодирующего аминокислоту метионин – М. Этот триплет называется старт– кодоном или кодоном инициации. Транскрибируемый фрагмент ДНК заканчивается сразу перед одним из кодонов терминации (стоп– кодоном). Детали матричного синтеза мРНК или транскрипции (промоторные зоны плюс-цепи ДНК, работу и характер РНК-полимераз и проч.) и детали строения самой мРНК (например, наличие и вариации поли-А сигнала и проч.) большого значения для нас здесь не имеют. У эукариот трансляции, то есть, переводу генетической информации в полипептид, предшествует так называемый процессинг мРНК, в ходе которого из тела этой молекулы вырезаются некодирующие сегменты, интроны, а оставшиеся сегменты, экзоны, формируют кодирующий полинуклеотид. У прокариот интронов нет, их мРНК практически готова к трансляции сразу после синтеза. Дальнейшие события реализации генетической информации, то есть, синтеза полипептида, кодированного в полинуклеотиде, описываются в учебниках примерно так, как коротко изложено ниже.
После транскрибирования мРНК не остается комплементарно связанной с ДНК-шаблоном; она освобождается от ДНК, которая затем восстанавливает свою двойную структуру. В одной эукаритической клетке количество молекул мРНК может составлять свыше 10.000. Наряду с молекулами мРНК на ДНК образуются и другие транскрипты, в том числе молекулы рибосомной и транспортных РНК, которые также имеют важное значение в реализации генетической информации. Все эти РНК называют еще ядерными. Наиболее обильными РНК в клетках всех видов являются молекулы рибосомной РНК (рРНК), которые выполняют роль структурных компонентов рибосом. У эукариот синтез рРНК контролируется огромным количеством генов (сотни и тысячи копий) и происходит в ядрышке. Не похоже, что структура рРНК имеет серьезное значение для обсуждаемой далее формальной организации генетического кодирования, и мы не станем на ней останавливаться. Совершенно другую роль в этих процессах имеют встречающиеся в клетке в несколько меньших количествах молекулы транспортных РНК (тРНК), которые участвуют в декодировании информации, трансляции. Это те самые декодеры или молекулы-посредники (codemakers Барбьери), – которые обусловливают специфическую связь между хранилищем генетической информации, нуклеиновыми кислотами, и строительным материалом, служащим для ее реализации, то есть для конструирования пептидов – аминокислотами.
Роль транспортных РНК в синтезе белка была постулирована еще до их открытия. В 1955г. Крик приписал им функцию адаптера, который может нести аминокислоту и образовывать водородные связи с кодирующей полинуклеотидной матрицей. Гипотеза адаптера оказалась необходимой в связи с упоминавшейся уже невозможностью обнаружить между аминокислотами и нуклеиновыми кислотами стереохимическое соответствие, достаточное для того, чтобы обеспечить считывание генетического кода. В 1957г. в лаборатории Мэлона Хогланда было показано, что в ходе белкового синтеза активированные аминокислоты переносятся на особый тип РНК, получивший тогда наименование растворимой РНК и называемой теперь транспортной.
Стереохимия тРНК хорошо изучена и весьма характерна. Мы остановимся на ней поподробнее. Типичная молекула тРНК – это полинуклеотидная цепь длиной 75—90 (по преимуществу, 76) нуклеотидов. Молекулярные массы тРНК лежат в пределах 17.000—35.000. Часть оснований нуклеотидных пар, уже после синтеза тРНК, в определенных положениях модифицирована, это неканонические, редкие, так называемые (минорные), составляющие до 10% от общего числа. Среди них – дигидроуридин (D), псевдоуридин и инозин (I); последний играет существенную роль в узнавании кодона. В дополнение к этим модификациям несколько нуклеозидов метилированы. Все эти модификации – результат посттранскрипционного процессинга тРНК, которая копируется с «нормальной» матрицы. В 75% случаев молекулы тРНК открываются5'-гуанином (он фосфорилирован) и во всех случаях завершается триплетом ССА– 3'.