Чтение онлайн

на главную - закладки

Жанры

Клеймо создателя
Шрифт:

Наконец, третий параметр – это ввод в систему гравитационного ритмоводителя, не слишком понятную роль которого (облигатную или факультативную – неизвестно) в природе играет Луна. Собственно, весь этот «эксперимент» уже поставлен (правда, не нами), мы – его отдаленный (хотя, возможно, и не конечный) результат.

В настоящее время одними из наиболее интересных экспериментов первой группы, целью которых является выяснение конкретных молекулярных механизмов формирования генетического кода, являются эксперименты с так называемыми аптамерами, небольшими молекулами РНК или одноцепочечных ДНК, структура которых (выясняемая опытным путем) делает их высокоаффинными специфическими лигандами по отношению к молекулам изучаемого вещества. Аптамеры, используемые для исследования происхождения генетического кода, отличаются определенным, пусть и не слишком сильным, стереохимическим сродством с аминокислотами. Такие аптамеры отбираются из комбинаторных библиотек РНК-олигонуклеотидов специальными методами (SELEX-методы от англ. Systematic Evolution of Ligandsby Exponential Enrichment), суть которых заключается в каскадном обогащении отдельных компонентов этих библиотек, отбираемых на сорбентах, с последующим секвенированием сконцентрированного и очищенного продукта.

Почему аптамеры так привлекательны?

Во-первых, потому, что тРНК – по крайней мере, для десяти аминокислот – узнается соответствующей АРСазой и присоединяет специфическую аминокислоту даже если эту тРНК «обрезать» до размера акцепторной мини-спирали (иногда и короче), содержащей ССА-3» -конец 67

И наоборот: «обрезанная» молекула АРСазы (в некоторых случаях – обрезанная таким образом, что она «не достает» до антикодона) сохраняет тРНК-специфичность. Эти поразительные наблюдения привели исследователей6 к мысли о существовании особого, «операционального» кода, который определяет самостоятельное узнавание молекулами АРСаз «своих» тРНК по последовательностям акцепторного стебля в районе «посадки» аминокислоты.

67

Schimmel P, Beebe K (2006). AminoacyltRNA synthetases: from the RNA world to the theater of proteins. In: Gesteland RF, Cech TR, Atkins JF (eds). The RNA World. Cold Spring Harbor Lab. Press, Plainview, NY, pp 227—255.

Во-вторых, оказалось, что определенные аминокислоты (не все) обладают выраженным сродством к некоторым РНК-аптамерам – в частности, к таким, которые содержат кодоны и антикодоны, узнающие эти аминокислоты в соответствии с современным генетическим кодом. Исследователи отмечают независимость такого сродства от механизмов трансляции, так что жизнь в принципе могла его использовать и до формирования этих механизмов. Последующие адаптации привели, в конечном счете, к возникновению известной сегодня трансляции, основными компонентами которой являются тРНК и АРСазы. И если ранние АРСазы имели, скорее всего, РНК-природу, то гипотетический претрансляционный операциональный код мог быть использован для сборки первых аминокислотных последовательностей – пептидов, способных по эффективности полезных функций выигрывать соперничество с ферментами РНК-мира. Не факт, что этот примордиальный код был даже триплетным. Выяснилось, в-третьих, что сродство аминокислот с аптамерами определяется наличием в составе последних, скорее, антикодонных, нежели кодонных участков.

Гипотеза Сергея и Александра Родиных 68 предполагает, что на ранних этапах операциональный код был ориентирован на РНК-последовательности, ставшие позднее акцепторным стеблем тРНК. Он кодировал четыре-шесть аминокислот; постепенно этот набор обогащался, расширяясь по флангам, пока из первичного кода не выделился тот строгий вариант, который мы сегодня и называем универсальным генетическим. Не слишком, но все же заметная регулярность структуры тРНК, навела этих исследователей на забавную мысль о поэтапной эволюции молекулы тРНК в результате последовательного удлинения (по схеме Фибоначчи) двух исходных компонентов – антикодонного триплета (основания) и «хвоста» молекулы 5`-DCCA– 3` (основания), где D—неспаренный нуклеотидный детерминатор (73-й нуклеотид; обычно это пурин – А, реже G); «хвоста», к которому прикрепляется аминокислота: 3,4,7,11,18,29,47,76. Шестая итерация привела к числу, соответствующему «стандартной» длине тРНК. Близки к этой гипотезе соображения Деларю 69 , который предположил существование каскадного двоичного механизма узнавания АРСазой «своей» тРНК – начиная со второй буквы кодона. Здесь нет необходимости вдаваться в детали, тем более, что молекулярный механизм каскадов Деларю остается неясным.

68

Rodin AS, Szathmary E, Rodin SN, 2011, On origin of genetic code and tRNA before translation

Biology Direct 2011, 6:14

69

MarcDelarue, 2006,An asymmetic underlying rule in the assignment of codons: Possible clue to a quick early evolution of the genetic code via successive binary choices RNA, 10.1261/rna.257607

Так или иначе, рибозим, осуществлявший в машине первичного кодирования функцию АРСазы, неизбежно должен был обладать и матричными свойствами, которые позднее – при замене рибо-АРСаз на белковые – могли участвовать в формировании пар кодон-антикодон. При этом эволюция не делила цепи РНК на кодирующую (смысловую) и некодирующую (анти-смысловую): первоначально обе они были кодирующими, что еще в 1979г предположили Эйген и Шустер. Именно такая симметрия могла развести будущие белковые АРСазы на два класса, которые, в свою очередь, придали ацилируемым аминокислотам их взаимную групповую симметрию. С определенными оговорками эта симметрия нашла свое выражение в одной из модифицированных таблиц генетического кода, которую предложили Родины, назвав ее неслучайной. Мы не приводим ее здесь, поскольку симметрия тех таблиц кода, которые мы уже описали (в первую очередь, матрицы), представляется более выраженной – также, как их оцифровка. Матрица указывает, в том числе, на вторую букву кодирующего триплета как на детерминатор гидрофобности (гидрофильности) кодируемой аминокислоты, в то время, как первая его буква (в меньшей степени третья) определяет ее массу.

Длительная и кропотливая экспериментальная работа, поиск едва заметных следов, отмечавших происхождение и историю генетического кода, вс это почти детективное расследование природы генетического кодирования буквально завораживает интеллект современного биолога, «траченного», несмотря на все предостережения, почти лапласовским детерминизмом и механистическим мышлением, неизбежными знаками времени. Биология долго ещ будет исследовать «молекулярные машины» трансляции, репликации и кодирования, «механизмы» зрения, свертывания крови и т. п., не отдавая себе отчета в том, что ее предмет находится в полушаге от квантового мира, «механика» которого – никакая не механика, а детерминизм для которого – противоестествен. Но эти исследования постепенно обогащают наши знания и рождают новые увлекательные гипотезы и предположения. В этом описанные выше числовые особенности генетического кода, однажды обнаруженные, но не обогащенные пока пошаговой экспериментальной работой (требующей намного большего масштаба), казалось бы, уступают молекулярным исследованиям. Такая работа, однако, впереди.

Гипотеза «ключ-замок» подводит нас к мысли о том, что генетический код мог сформироваться примерно одним и тем же одновременно в нескольких местах с благоприятными условиями на первичной Земле. Более того, он, вероятно, должен оставаться таким же, будучи сформирован в благоприятных условиях и за ее пределами. Известные (хотя и небольшие)

отклонения от универсальной версии могут в этом случае быть результатом исходных различий серии кодов, возникших независимо. Эта гипотеза не исключает, однако, и того, что код мог возникнуть в единственном месте, в котором случайно были скомбинированы необходимые условия. Тогда указанные отклонения можно считать результатом дальнейшей эволюции кода в меняющихся условиях. В любом случае и «ключ», и «замок» соответствовали друг другу не слишком точно, допуская определенный люфт, который свидетельствует о том, что эксперименты с аптамерами не стоит трактовать однозначно. Какой контраст с «гипотезой» точной подгонки, приписываемой Господу! С другой стороны, отклонения от универсального кода (их перечень и характер можно найти в ГенБанке 70 ) могут серьезно нарушить симметрии матрицы и каллиграммы, а природа инструмента коррекции этих отклонений, приводящей к фиксации описанной здесь кодовой арифметики, совершенно неясна. Во всяком случае, естественная природа этой арифметики представляется чрезвычайно странной. Либо мы должны считать ее просто забавной иллюзией – подобно совпадению числа 76 в фибоначчи-подобном ряду Родиных и наиболее частого числа оснований в молекуле тРНК. И даже в этом случае, отмахнуться от всех этих симметрий, совпадений, «информационных символов» и т. п., однажды обнаружив их, невозможно. Они вновь и вновь притягивают внимание, поражая и красотой, и тайной, и самим своим существованием.

70

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c

Современный естествоиспытатель вряд ли легко согласится (если согласится вообще) с тем, что генетический код – это артефакт, даже если это когда-нибудь станет фактом (невольный каламбур): несовместимая с сегодняшней наукой малохудожественная фантастика, конкретный косяк, как скажут нынешние блаженные младенцы. Трудно в наши дни думать об инопланетянах, иначе, чем о каких-то зеленых человечках, жутких монстрах или всемогущих ангелах во плоти. Но что мы скажем о нашей собственной цивилизации, если она – просуществовав достаточно долго – сумеет, в конце концов, освободиться от нынешнего убожества (что ни говори, но надежды на это она еще подает)? Неизбежным следствием развития технологий и науки станут, в частности, все более успешные попытки промоделировать условия возникновения жизни с помощью суперкомпьютеров будущего. Надежная верификация этих попыток, в конечном счете, потребует увеличения масштабов лабораторной реторты, «плавильного котла», в котором будут осуществляться теоретически рассчитанные молекулярные процессы, – вплоть до планетарных. Чистота и законченность такой экспериментальной работы потребует полной изоляции реакционной смеси (целевой планеты) и продуктов реакции. Возникающие в ходе этой работы хиральная чистота определенных веществ и генетический код, обеспечивающий уверенное воспроизводство молекулярных носителей информации, заключенных в клеточные структуры, будет означать, что эксперимент идет «в штатном режиме», и естественное любопытство ученых потребует продолжить его до полного завершения, то есть до того момента, пока на целевой планете не появятся разумные существа, способные не только– как сегодня мы сами – искать ответ на вопрос о происхождении жизни, но и освободить собственную цивилизацию от каких бы то ни было внутривидовых войн и идиотских властей от Бога с их идиотской политикой. Только в этом случае с ними можно будет разговаривать, только в этом случае эксперимент можно счесть успешным. До его завершения создатели приложат все усилия, чтобы оградить свои создания от каких бы то ни было «межзвездных» контактов.

Если дело пойдет подобным образом (а иначе и невозможно представить себе цивилизацию Homo), то, потребуется обязательно промаркировать эксперимент – чтобы потом не сомневаться в возможных контаминациях и легко отличать создания от визитирующих создателей. Такая метка должна быть помехоустойчивой и чрезвычайно стабильной (эксперимент продлится, скорее всего, около 5 миллиардов лет). Генетический код (оставляющий в рамках такой помехоустойчивости еще достаточно широкий выбор вариантов) – это, похоже, единственный пластичный материал, на котором можно оставить несмываемую временем метку, клеймо, тавро, информационную сигнатуру, оттиск, знак, «лейблУ», бренд – что угодно, свидетельствующее об артефакте, искусственной природе, неслучайности такого выбора. Экспериментаторам необходимо при этом следовать физическим и химическим законам и для будущих белков выбирать такие аминокислоты, аффинные аптамеры к которым или другие факторы, по крайней мере, не мешали бы формированию будущих стабильных кодонов. При этом исходный код – код жизни, произошедшей когда-то во Вселенной «первой», может отличаться от дочернего совсем ненамного. Возможно ли это в принципе – должен, как будто, показать анализ аффинитета различных аптамеров к альфа-аминокислотам, не вошедшим в нашу земную «элитную двадцатку».

Цивилизация, которая окажется способной поставить описанный выше эксперимент, должна будет также обладать средствами наблюдения за ним. Возможны ли они и какими будут, Автор судить не берется. Он не может представить себе ни прикладного будущего т. н. квантовой телепортации, ни контроля над течением времени, ни того, каким образом можно использовать тут темную материю, ни способности представителей сверх-цивилизации «прикидываться венграми». Но в чем он, всю жизнь занимаясь молекулярной биологией, уверен абсолютно, так это в том, что у неудачного эксперимента перспектива всегда одна: хромпик-канализация. Хромпик (3%-ный раствор бихромата калия в концентрированной серной кислоте) разрушает «грязь» предыдущего биохимического опыта, смывая ее со стенок стеклянной посуды, после чего колба многократно прополаскивается; вода сливается в раковину. Хромпик – это войны с «гарантированным» взаимным уничтожением, а о том, что такое канализация, узнают те немногие, кому все же «свезт» уцелеть в последней из них, поскольку гарантии не дает даже страховой полис. Вряд ли хорошо промытая реторта сгодится для следующей попытки создать жизнь; если грязь в ней все-таки сохранится, тогда от уцелевших бактерий может, в принципе, произойти только новый сапиенс. Но пока эксперимент продолжается, нельзя рассчитывать на то, что нам удастся обнаружить разум за пределами «нашей» лабораторной колбы, которая – пустынный шар в пустой пустыне. На то, что экспериментаторы будут с нами разговаривать, тоже надежды мало. Не о чем, да и военщина наша (или «вражеская») – случись ей разобрать инопланетную речь – немедленно попытается засекретить «контакт», воображая, что ей удастся привлечь инопланетян на свою сторону. Надежда на это – пустой номер, о чем и писал Станислав Лем в «Голосе Неба». Поэтому клеймо, которым помечена жизнь на Земле, что-то говорит толь ко тем, кто его поставил.

Поделиться:
Популярные книги

Бестужев. Служба Государевой Безопасности. Книга 5

Измайлов Сергей
5. Граф Бестужев
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга 5

Эволюционер из трущоб. Том 2

Панарин Антон
2. Эволюционер из трущоб
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Эволюционер из трущоб. Том 2

Вы не прошли собеседование

Олешкевич Надежда
1. Укротить миллионера
Любовные романы:
короткие любовные романы
5.00
рейтинг книги
Вы не прошли собеседование

Идеальный мир для Лекаря 23

Сапфир Олег
23. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 23

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке

Свет Черной Звезды

Звездная Елена
6. Катриона
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Свет Черной Звезды

На границе империй. Том 10. Часть 2

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 10. Часть 2

Вернуть невесту. Ловушка для попаданки

Ардова Алиса
1. Вернуть невесту
Любовные романы:
любовно-фантастические романы
8.49
рейтинг книги
Вернуть невесту. Ловушка для попаданки

Купец V ранга

Вяч Павел
5. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец V ранга

Пятничная я. Умереть, чтобы жить

Это Хорошо
Фантастика:
детективная фантастика
6.25
рейтинг книги
Пятничная я. Умереть, чтобы жить

Краш-тест для майора

Рам Янка
3. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
эро литература
6.25
рейтинг книги
Краш-тест для майора

Я еще не князь. Книга XIV

Дрейк Сириус
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще не князь. Книга XIV

Блуждающие огни

Панченко Андрей Алексеевич
1. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Блуждающие огни