Климат и деятельность человека
Шрифт:
Ядерная энергетика базируется на расщеплении (делении) атомов тяжелых радиоактивных элементов с выделением тепла (ядерная реакция) и на синтезе (соединении) ядер легких атомов (термоядерная реакция), тоже сопровождаемом значительным выделением энергии.
Энергетическая база также подвержена воздействию климата. Режимы освещенности, термический и ветровой влияют на потребление энергии и ее перераспределение по экономическим районам, особенно в странах с резко меняющимися климатическими условиями. По мере ввода в строй капитальных мощностей резко возрастает стоимость дефицита тепла, которая по некоторым оценкам в среднем для мира может достигать не менее нескольких миллиардов рублей в год.
Что касается новых видов энергии и в особенности возобновляемых энергоресурсов, то развитие
Уже сейчас существует много автономных гелиоустановок для городов и сельских местностей. Фотогальванические солнечные элементы, преобразующие непосредственно свет в электрическую энергию, весьма перспективны (стоимость вырабатываемой ими электроэнергии упала с астрономической цифры 500 долларов за 1 Вт мощности до 13,5 долларов и продолжает падать).
Большие возможности таит в себе и ветроэнергетика. В США строится крупная ветроэнергетическая установка мощностью 1,5 млн. Вт. В ряде стран (Индия и др.) успешно разрабатывается производство биогаза (метана). Бразилия начала производить из сахарного тростника и маниоки этиловый спирт, чтобы заменить им импортный бензин. Налаживается производство из отходов древесины пиролизного древесного угля.
Эксплуатация не всех источников энергии будет зависеть от климата. Тем не менее развитие новых видов энергетической базы резко повысило интерес к проблеме метеорологии и энергии. Так, по инициативе ВМО в 1979 г. был проведен международный симпозиум, посвященный метеорологическим проблемам развития солнечной энергии. В конце 1979 г. в Женеве состоялось международное совещание экспертов по проблеме энергии ветра.
Одним из недостатков энергии Солнца и ветра является малая плотность энергии на единицу площади. В районах, где из-за большой концентрации производства здания плохо приспособлены для солнечной и ветровой энергетики, ориентироваться на новые виды энергии нецелесообразно. В странах и районах, где население рассредоточено, ориентация на возобновляемые источники энергии вполне себя оправдывает как с экономической, так и с социальной и экологической точек зрения.
Развитие энергетики, основанной на возобновляемых источниках, по-видимому, неизбежно, но именно эти источники в наибольшей мере зависят от климатических условий. Так, для разработки и эксплуатации большинства гелиоустановок требуются данные о прямой и рассеянной радиации, об эффективном излучении, спектральном солнечном излучении. Крайне важно для этих установок знать внутрисуточную структуру поля радиации, а также полей ветра, температуры, облачности и др. Необходимо разработать климатические критерии, обеспечивающие благоприятные условия для эффективной работы солнечных установок различного типа, изучить внутрисуточную структуру составляющих радиационного и теплового баланса для поверхностей различной ориентации и широтных зон, произвести районирование экономических областей отдельных стран и регионов мира по обеспечению солнечными ресурсами применительно к различным типам солнечных установок.
Со стороны ветроэнергетики предъявляется целый ряд требований. Известно, что потенциальные климатические ветроэнергоресурсы пропорциональны плотности воздуха и кубу скорости ветра. Поэтому крайне важно выбрать место установки ветродвигателей. Кроме того, ни один ветродвигатель не в состоянии полностью использовать потенциальные ветроэнергоресурсы, так как он может работать между нижним пределом скорости ветра (скоростью пуска) и верхним пределом, т. е. скоростью ветра, при которой двигатель способен выйти из строя. Без знания климатического режима планирование ветроэнергетики и эксплуатация ветроэнергоустановок не могут быть эффективными.
Человек постоянно испытывает воздействие факторов окружающей среды. К ним относятся тепловые, шумовые, световые, радиационные, загрязнение окружающей среды, эмоциональные нагрузки,
Однако наиболее существенны факторы, определяющие тепловое состояние человека, в частности испарение, теплообмен и радиационные притоки, целиком зависящие от климатических условий. На основе учета этой зависимости возникло новое направление исследований, называемое биоклиматологией; последняя делится на общую и частную.
Общая биоклиматология занимается изучением влияния климата, погоды, гелиогеофизических, геомагнитных, атмосферно-электрических и других факторов на самочувствие и здоровье человека. Частная биоклиматология исследует влияние микроклимата различных природных и городских ландшафтов, а также помещений на самочувствие и условия проживания человека.
Анализ статистических данных и уравнения теплового баланса позволяет выделить климатические условия, оптимальные для проживания человека. Основной ограничивающий фактор — температура. Верхний предел возможных для проживания условий (Tmax) составляет около 55° С, нижний (Tmin) — порядка —60° С. Зоной климатического комфорта считается довольно узкий интервал температур порядка 20—25° С, который несколько различен в странах с разным влажностным и ветровым режимом. Проживание при температуре ниже и выше этих величин связано уже с определенными дополнительными условиями (утепление или охлаждение).
На рис. 17 приведен график, характеризующий распределение населения мира в диаграмме среднегодовых значений Tmin и Tmax. Заштрихованный район указывает диапазон температур, в которых проживает 60% населения. Он находится между Tmax порядка от 30—35° до 35— 40° С и Tmin от —10° до 15° С. В зоне, обозначенной горизонтальной штриховкой, проживает около 30% населения. Эта зона лежит в пределах Tmax между 20—25° С и 45—50° С, а Tmin между —50:—55° С и 20—25° С.
Рис. 17. Распределение населения земного шара в зависимости от климатических условий
В экстремальных климатических условиях проживает всего около 10% населения. По данным Всемирной организации здравоохранения и Всемирной продовольственной организации наиболее благоприятный климатический эталон соответствует среднегодовой температуре воздуха 10° С. Уменьшение этой температуры требует увеличения калорийности пищи порядка 3% на каждые 10° С понижения температуры. При повышении среднегодовой температуры калорийность снизится на 5%. Проведенные специальные исследования показали, что в различных климатических условиях требуемая калорийность пищи может меняться в существенно больших пределах. Естественно, что на калорийность влияют и другие климатические факторы. Но эти вопросы еще достаточно не изучены. Тем не менее ясно, что изучение и районирование биотермических условий жизнедеятельности человека — весьма актуальная задача, особенно для стран с холодным или жарким климатом.
Воздействие климата на условия проживания человека и его самочувствие ярко проявляется в благоприятном влиянии факторов климатического лечения. В связи с этим курортология и климатотерапия стали одним из закономерных и эффективных арсеналов средств современной медицины в лечении заболеваний.
Однако это направление может успешно развиваться при условии научных обоснований влияния климата на здоровье человека. Влияние многих климатических факторов, таких, как явления, связанные с солнечной активностью, атмосферным электричеством, резкими изменениями погоды и др., до конца еще не выяснено. Исследования показали, что для здорового организма возможность приспосабливания (адаптации) к меняющимся климатическим условиям весьма высокая. В связи с этим зависимость здоровья практически здорового человека от климатических условий не так велика. Однако больные, люди пожилого возраста и дети чутко реагируют на перемены климата.