Климат и деятельность человека
Шрифт:
Время достижения максимальной (от четырех- до семи-восьмикратной) концентрации при разных параметрах модели колеблется для атмосферы между 2135 и 2195 г., для глубинного океана — между 2285 и 2345 г., а для деятельного слоя океана — между 2155 и 2170 г.
Приведенные оценки относятся к числу наиболее реалистичных. Однако рассматривая влияние антропогенного роста CO2 на климат, обратим внимание на дву-, трехкратное увеличение CO2. Дело в том, что для биосферы и человека многократное увеличение CO2 не представляет никакой опасности, а во многих отношениях, главным образом с точки зрения ускорения роста растений, оно даже выгодно. По существующим оценкам двукратное увеличение антропогенного CO2 может вызвать рост деревьев в течение следующих 200 лет.
Полосы поглощения
На рис. 22 приведены результаты численных экспериментов, выполненных в США. Как видим, рост концентрации CO2 более чем в 2 раза меняет результаты, при четырехкратном увеличении эффект заметен, но далее он ослабевает.
Практически все численные эксперименты указывают на рост температуры в нижней тропосфере и охлаждение атмосферы в верхней тропосфере и стратосфере. Вследствие этого увеличиваются вертикальный температурный градиент, неустойчивость атмосферы, конвективные движения, облачность и осадки. В результате возникающей здесь обратной связи (увеличение альбедо и отраженной радиации) роль тепличного эффекта уменьшается. Подъем температуры в полярных районах может достигать 8—10° С (в средних и низких широтах 1—2° С).
По оценкам различных моделей средняя для полушария величина повышения температуры за счет тепличного эффекта от 0,7—0,8 до 9,6° С у поверхности. Наиболее реальны, по-видимому, оценки тепличного эффекта в среднем для полушария у поверхности в 2—2,5° С при двукратном увеличении CO2.
Однако некоторые исследователи показали, что чистое увеличение температуры при удвоении концентрации CO2 составляет всего 0,25° С. Остальной же рост температуры обязан побочному тепличному эффекту, связанному с повышением испарения и увеличением содержания в атмосфере водяного пара, который обладает сам тепличным эффектом.
Какие же последствия могут быть вызваны увеличением CO2? Прежде всего — это возможное изменение режима осадков и испарения, потепление климата, наиболее сильное в высоких широтах, отступление снеговой линии, таяние ледников, нестабильность ледяного покрова, нарушение циркуляции атмосферы и океана, частые засухи.
На ряде отраслей народного хозяйства многие из этих изменений не обязательно скажутся отрицательно, для лесов и сельского хозяйства, наоборот, вероятен даже положительный эффект. Однако при потеплении климата и океана может увеличиваться поток CO2 в атмосферу. В этом случае может усилиться тепличный эффект, растаят континентальные льды, повысится уровень океана, будут затоплены прибрежные районы и др. Так, Болин считает, что при потеплении климата уровень океана начнет повышаться на 1 мм в год (за 100 лет на 10 см). По данным Гриббина, повышение уровня океана вследствие таяния льда в Антарктике составит 5 м за 300 лет. Эти оценки слишком приближенные. Тем не менее в любом случае, если научные исследования подтвердят вероятность того, что воздействие на биосферу и сжигание ископаемого топлива представят серьезную угрозу окружающей среде и климату, перед человечеством возникнет ряд серьезных проблем. Главная из них — замена ископаемого топлива альтернативными энергетическими источниками. Среди них основное место будут занимать ядерная, солнечная и ветровая энергия, энергия океана, геотермальное тепло. Большинство из этих источников энергии зависит от климата.
Рис. 22. Результаты модельных расчетов по изменению температуры в атмосфере при двукратном (а) и четырехкратном (б) увеличении CO2 в атмосфере
Имеются, однако, основания предполагать, что проблема CO2 при всей ее важности может оказаться и преувеличенной,
Помимо CO2 и другие малые примеси, например фреоны (хладоны), обладают тепличным эффектом. Фреоны — одна из разновидностей фторхлоруглеродных соединений. Они поступают в атмосферу вследствие их применения в разного рода промышленных и бытовых установках (рефрижераторы, холодильники, системы кондиционирования воздуха и др.) и при производстве товаров широкого потребления (аэрозольные упаковки — распылители парфюмерных и косметических товаров, инсектицидных препаратов, лаков, красок и т. п.).
В настоящее время около 85—87% общего производства фреонов попадает в атмосферу. Поскольку время жизни Ф-11 и Ф-12 соответственно 50 и 70 лет, они накапливаются в атмосфере, и в этом их главная опасность. По имеющимся оценкам в атмосферу с 1958 по 1975 г. выброшено около 2,9106 т Ф-11 и 4,4106 т Ф-12. При этом доля США составила соответственно 42 и 50%, а доля СССР всего 13 и 4,8%.
Фреоны оказывают двоякое действие на атмосферу. С одной стороны, они разрушают озонный слой и вызывают вследствие этого неблагоприятные биологические эффекты, с другой — подобно CO2 и некоторым другим малым примесям) (например, N2O, СН4, CCl2F2, NH3, водяному пару и др.), обладают тепличным эффектом.
Таблица 12. Сравнение возможных изменений концентрации фреонов и CO2 в будущем и связанные с этим изменения температуры у поверхности для двух вариантов будущего роста фреонов
Год | Концентрация фреонов в атмосфере при уровне производства на 1973 г. | Концентрация фреонов при росте производства 10% в год | Оценка эффекта CO2, основанная на модели Манабе | |||||
---|---|---|---|---|---|---|---|---|
Концентрация, ppm | Изменение t у поверхности, °С | Концентрация, ppm | Изменение t у поверхности, °С | Предполагаемая концентрация CO2, ppm | Изменение t у поверхности, °С | |||
Ф-11 | Ф-12 | Ф-11 | Ф-12 | |||||
1975 | 0,09 | 0,21 | 0,06 | 0,09 | 0,21 | 0,06 | 330 | 0,00 |
1980 | 0,15 | 0,29 | 0,09 | 0,17 | 0,32 | 0,09 | 340 | 0,10 |
1990 | 0,25 | 0,44 | 0,10 | 0,50 | 0,80 | 0,30 | 360 | 0,30 |
2000 | 0,32 | 0,58 | 0,20 | 1,40 | 2,1 | 0,70 | 390 | 0,50 |
Интенсивность полос поглощения инфракрасной радиации Ф-11 почти в 5 раз, а Ф-12 почти в 4 раз больше, чем интенсивность поглощения инфракрасной радиации группой полос CO2. Только из-за малой концентрации фреонов по сравнению с CO2 их эффект пока незаметен. На 1975 г. концентрация Ф-11 и Ф-12 в атмосфере составила соответственно 0,09 и 0,21 ppb (ppb — единица измерения, которая в 1000 раз меньше ppm). Расчеты показывают, что, если рост производства этих фреонов будет составлять соответственно 10 и 5% в год, через 100 лет их концентрация увеличится в 25441 и 310 раз. Если даже выпуск фреонов в атмосферу будет соответствовать нынешнему уровню, через 100 лет количество их в атмосфере возрастет в 120 раз. При сокращении выброса фреонов на 5% в год концентрация их через 100 лет увеличится всего в 2,2 раза.