Чтение онлайн

на главную - закладки

Жанры

Компьютерная обработка звука
Шрифт:

Если спектр преобразуемого аналогового сигнала располагается в полосе частот от 0 до F, то частота выборки (или частота дискретизации) не должна быть менее 2F. Таким образом, если реальный аналоговый сигнал содержит частотные компоненты от 0 Гц до 20 кГц, то частота дискретизации такого сигнала должна быть выбрана не меньше 40 кГц.

На этот счет существует теорема Шеннона-Котельникова и частота Найквиста (F) как следствие из данной теоремы. Однако теорема не содержит утверждения о точном восстановлении аналогового сигнала при указанном условии (> 2F). На самом деле восстановленный сигнал имеет произвольные амплитуду и фазу (в конкретных пределах). Статистически достоверное восстановление исходного аналогового сигнала имеет место при частоте выборки не менее 5F.

Отношение

сигнал/шум на выходе N-разрядного АЦП в идеальном случае равно (6N-6) дБ, поскольку существует неустранимая погрешность квантования (так называемый шум квантования) равная половине разности между соседними уровнями квантования, что эквивалентно потере 6 дБ в отношении сигнал/шум. Повышение частоты преобразования существенно снижает интермодуляционные искажения, обусловленные наложением спектров – aliasing (совмещение, алиазинг), – и повышает достоверность восстановления аналогового сигнала. Реальный музыкальный сигнал далек от белого шума (близок к розовому – шуму дождя, прибоя, ветра – то есть шуму, плотность которого спадает с ростом частоты), но шум квантования не зависит от сигнала, если число уровней квантования неизменно и распределение их равномерно. Другое дело – погрешность преобразования, которая действительно зависит от амплитуды и частоты входного сигнала и выражается в реальных нелинейных и интермодуляционных искажениях, то есть паразитных спектральных составляющих.

На слух такие ошибки воспринимаются как «зернистость» во фрагментах записи с низким уровнем сигнала. При этом возникает ощущение «грязного» звука. Оно же появляется при изменении разрядности записи, например когда 20-разрядную запись приводят к 16-разрядной или последнюю – к 8-разрядной.

В таких случаях для уменьшения ошибок квантования в цифровых записях применяется дизеринг. Дизеринг (dithering – размывание) представляет собой подмешивание в исходный сигнал (в цифровой форме) псевдослучайного шума со специально подобранным спектром. В результате наиболее заметные (для человеческого слуха) паразитные спектральные составляющие перемещаются из среднечастотной (3–5 кГц) в высокочастотную область (15–17 кГц).

Другими словами, метод дизеринга заключается в добавлении при крайне низком уровне сигнала специального вида шума, обычно высокочастотного. Это приводит к независимости шумов квантования и сигнала, однако общий уровень шумов немного возрастает. Действительно, добавленный шум может восприниматься на слух как постоянное шипение. Однако это едва ощутимо и намного «приятнее» на слух, чем искажения, появляющиеся при отбрасывании младших разрядов.

В результате обработки сигнала с применением дизеринга к нему добавляется шум квантования. Его спектр равномерен и занимает полосу от 0 Гц до половины частоты дискретизации. Равномерность по частоте и некоррелированность шума с сигналом достигается благодаря дизерингу, а также правилу квантования, согласно которому амплитуда в отсчете округляется до ближайшей опорной величины. Применение более сложных правил округления позволяет получить другие (неравномерные) спектральные характеристики шумов округления при сохранении полной мощности шумов неизменной. Учитывая, что слух человека имеет спад чувствительности на высоких и на очень низких частотах, можно, используя специальные правила округления при квантовании, получить спектр шумов округления, большей частью сосредоточенный в области наименее заметных на слух частот. Следовательно, можно значительно увеличить отношение сигнал/шум в диапазоне слышимых частот в цифровом сигнале, не увеличивая количество битов на один отсчет.

Для этого формируется спектр шумов квантования, имеющий форму, обратную кривой чувствительности слухового аппарата человека. То есть там, где наш слух наиболее чувствителен к шумам, кривая спектра мощности шумов будет иметь минимум, и наоборот, там, где наш слух менее чувствителен к шуму, будет сосредоточен максимум шумов. Подобный метод называется нойс-шейпингом (noise-shaping – формирование шума).

Применяя такие методы обработки сигнала, можно достичь субъективно лучшего восприятия звука, хотя объективные измерения отношения сигнал/шум во всем частотном диапазоне могут показать ухудшение этого параметра за счет увеличения мощности высокочастотных шумов.

Простейшее

редактирование

Операции редактирования можно условно разделить на четыре группы:

• простейшее редактирование;

• звуковые процессы;

• звуковые эффекты;

• дополнительные инструменты.

К группе простейшего редактирования относят операции, которые не затрагивают внутренней структуры звука, то есть не изменяют его акустических, частотных характеристик и пр.

Большинство из них используют буфер обмена, который представляет собой временную область для хранения. Буфер обмена может применяться также для перемещения данных из одного окна в другое.

Чаще всего используются операции, перечисленные ниже.

Cut (Отрезать). Выделенная часть данных удаляется из звуковой волны и копируется в буфер обмена.

Clear/Delete (Очистить/Удалить). Выделенный фрагмент данных удаляется без копирования в буфер обмена.

Trim/Crop (Вырезать/Обрезать). Удаляются все данные из окна, за исключением выделенного фрагмента.

Copy (Копировать). Копируется выделенный фрагмент данных в буфер обмена.

Paste (Вставить). Вставляется содержимое буфера обмена в окно данных, начиная с текущей позиции курсора, или заменяется выделение.

Mix (Смешать). Смешивается содержимое буфера обмена с данными в окне, начиная с текущей позиции курсора или с начала выделения.

Crossfade (Плавно заместить). Данные в окне плавно замещаются содержимым буфера обмена, начиная с позиции курсора (громкость одного сигнала плавно затухает, а другого нарастает).

Технология выполнения описываемых операций в программе Samplitude 2496 несколько отличается. Для временного хранения используется не отвлеченный буфер обмена, а две конкретные области: Clip для аудиоданных из Wave Projects (Волновые проекты) и VirtClip для Virtual Projects (Виртуальные проекты).

Clip – это область памяти для хранения выборок из Wave projects, которые копируются из окна волнового проекта и могут быть вставлены в тот же самый или в другой волновой проект. Кроме того, содержимое Clip может также быть смешано с содержимым окна другого волнового проекта. Clip всегда создается с атрибутами из проекта (разрядность в битах, частота дискретизации, моно/стерео режим, левый/правый канал) и представлен на экране окном, которое содержит слово «Clip» в своем названии и вид которого продемонстрирован на рис. 1.8. Другими словами, Clip выглядит как любой другой проект, который можно воспроизвести, редактировать и сохранить с любым именем.

Рис. 1.8. Окно Clip со скопированными аудиоданными в программе Samplitude 2496

В то время как Clip служит для пересылки звукового материала между окнами волновых проектов, VirtClip делает то же самое с данными из виртуальных проектов. На рис. 1.9 показано окно VirtClip со скопированными аудиоданными.

Рис. 1.9. Окно VirtClip со скопированными в него аудиоданными

При этом фактически VirtClip не содержит аудиоинформации, а хранит только ссылки на аудиофайлы, и в нем присутствует столько каналов, сколько их содержит скопированный фрагмент.

Использование обзорных окон при редактировании

Для быстрой ориентации в графиках звуковых данных вне зависимости от их масштаба в программах обработки звука используются разного вида обзорные окна. В них всегда видна волновая форма всего файла, сжатая до размеров окна. По ним также легко определить местоположение редактируемого в основном окне фрагмента.

Полоса обзора в программе Sound Forge

При выделении фрагментов и перемещении по звуковому файлу вы, вероятно, заметили изменения в полосе обзора (узкое окно чуть ниже названия окна данных), которая показана на рис. 1.10.

Рис. 1.10. Полоса обзора в программе Sound Forge

Поделиться:
Популярные книги

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель

Школа. Первый пояс

Игнатов Михаил Павлович
2. Путь
Фантастика:
фэнтези
7.67
рейтинг книги
Школа. Первый пояс

Убивать, чтобы жить

Бор Жорж
1. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать, чтобы жить

Единственная для темного эльфа 3

Мазарин Ан
3. Мир Верея. Драконья невеста
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Единственная для темного эльфа 3

Наследник пепла. Книга III

Дубов Дмитрий
3. Пламя и месть
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Наследник пепла. Книга III

Помещицы из будущего

Порохня Анна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Помещицы из будущего

Император поневоле

Распопов Дмитрий Викторович
6. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Император поневоле

Барон Дубов 2

Карелин Сергей Витальевич
2. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 2

Черный дембель. Часть 5

Федин Андрей Анатольевич
5. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 5

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Боярышня Евдокия

Меллер Юлия Викторовна
3. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Евдокия

Камень. Книга шестая

Минин Станислав
6. Камень
Фантастика:
боевая фантастика
7.64
рейтинг книги
Камень. Книга шестая

Безродный

Коган Мстислав Константинович
1. Игра не для слабых
Фантастика:
боевая фантастика
альтернативная история
6.67
рейтинг книги
Безродный

Пять попыток вспомнить правду

Муратова Ульяна
2. Проклятые луной
Фантастика:
фэнтези
эпическая фантастика
5.00
рейтинг книги
Пять попыток вспомнить правду