Кости, скалы и звезды. Наука о том, когда что произошло
Шрифт:
В это время шведский ученый Герард де Геер обнаружил слои такого рода в древних озерных отложениях на территориях, которые когда-то были покрыты ледниками. Он пришел к выводу, что регулярные отложения грубого и мелкого песка, как и годичные кольца у деревьев, отображают отдельные годы. Де Геер ввел термин «варва» (годичный слой отложений) и выдвинул мысль, что по этим слоям можно вычислить, сколько лет ледник питает озеро. Поскольку варвы зависят от количества растаявшего льда, толщина слоев меняется от года к году, от миллиметра до нескольких сантиметров. В соседних, сообщающихся озерах должна наблюдаться сходная картина отложений, поскольку питающие их ледники подвергались одним и тем же климатическим воздействиям. А значит, как и в дендрохронологии,
С 1878 г. де Геер выводил на полевые исследования в шведские долины целые армии студентов, которые должны были сравнивать варвы озер, образовавшихся в местах отступления ледников в конце последнего ледникового периода. С тех пор озера успели высохнуть, и, к счастью для де Геера, их дно теперь прорезано ручьями и потоками, которые обнажили донные отложения. К 1910 г. ученый мог с уверенностью утверждать, что когда-то вся Скандинавия была покрыта огромной ледяной шапкой. Тут-то и вскрылась ошибочность датировки. Отступление ледников началось примерно 10 000 лет назад, а не 80 000, как предполагал Кролл, — в этом и состоял основной промах орбитальной теории.
Решить загадку оказалось под силу одному человеку — сербу по имени Милутин Миланкович, который большую часть Первой мировой войны провел за переосмыслением идей Кролла. В 1920 г. Миланкович вычислил совокупное воздействие эксцентричности, то есть изменения формы орбиты (в рамках 100 000 лет), нутации (за 41 000 лет) и прецессии равноденствий (за 26 000 лет) на количество солнечного тепла, полученного разными земными широтами за последний миллион лет. Миланкович считал, что ключ к разгадке надо искать в высоких широтах, в частности на 65° северной широты: именно там сильнее всего менялось количество получаемого солнечного тепла.
Самое же главное открытие, позволившее Миланковичу сделать шаг вперед, состояло в следующем: он сообразил, что сохранению снежного покрова до следующей зимы способствовали низкие летние температуры. Только при значительном устойчивом снижении максимальных температур лед мог не таять и накапливаться. В этом Миланкович противоречил Адемару и Кроллу, утверждавшим, что начало ледникового периода обуславливают морозные зимы. Результат получился ошеломляющим. Вопреки прогнозам предшественников, считавших, что ледниковый период закончился 80 000 лет назад, Миланкович датировал отступление ледников 10 000 лет назад, в полном соответствии с данными, полученными де Геером и другими.
Таким образом подтвердился возраст последнего ледникового периода, но как быть с остальными? Если ледники наступали не единожды, может ли орбитальная теория помочь в их датировке? Загвоздка состояла в том, что результаты расчетов никоим образом нельзя было перепроверить по земному рельефу. Последний ледник уничтожил почти весь рельеф, созданный своими предшественниками. Лишь кое-где остались крошечные следы их деятельности. Науке же требовалась непрерывная, уходящая в прошлое шкала, показывающая результаты работы ледников.
Ответ нашелся совсем не там, где его искали.
Давайте вкратце подведем итог того, что мы узнали. В конце XVII в. люди начали обращать внимание на странные, рифленые скальные поверхности в гористых районах Европы, а также камни, многие из которых отличались по геологическим характеристикам от окружающего ландшафта. В те времена большинство людей не сомневалось в их связи со Всемирным потопом, описанным в Книге Бытия. К 1840 г. Агассис пришел к выводу, что на самом деле это последствия Великого ледникового периода. В дальнейшем, с 1860 по 1910 г. первоначальная теория Агассиса была опровергнута, однако массовое наступление ледников в прошлом подтвердилось, и самый поздний из ледниковых периодов, как выяснилось, закончился 10 000 лет назад. Причины их возникновения тогда оставались неизвестными, однако к 1920-м гг. Миланкович доказал, что с большой долей вероятности ответ надо искать в том, как меняется обращение
До сих пор вся бурная исследовательская деятельность велась на суше. Океаном никто не интересовался. Лишь в начале 1930-х гг. научились, выходя на научно-исследовательских судах, бурить океанское дно длинными металлическими трубками и, взяв пробы грунта, исследовать отложения. Бытовало мнение, что океанская среда в последнее время оставалась практически неизменной.
С этим мнением пришлось расстаться в 1955 г., когда итальянцу Чезаре Эмилиани пришло в голову взглянуть на раковины фораминифер, сохранившихся в течении сотен тысяч лет в пробах грунта с океанского дна. Эти крохотные создания обитают в океанской толще на разной глубине, и после смерти их раковины погружаются в донный ил. Эмилиани предположил, что по стабильным изотопам, сохранившимся в фораминиферах, можно попытаться определить, каким был климат в прошлом.
Изотопы, как мы помним, это атомы с одинаковым содержанием протонов, отличающиеся по количеству нейтронов. Несмотря на то, что до сих пор мы в основном рассматривали радиоактивные формы, стабильных изотопов на самом деле большинство. Поэтому, как только изотоп усваивается организмом, соотношение одного стабильного изотопа к другому остается неизменным. Сколько бы времени ни прошло, показатели стабильных изотопов должны остаться прежними.
Эмилиани пытался реконструировать древние температуры по двум стабильным изотопам кислорода — 16O и 18O. Для наглядности представьте себе их в виде двух шаров разного веса. 18O будет чуть тяжелее — на два нейтрона, однако в химических реакциях оба будут вести себя абсолютно одинаково.
Прелесть использования фораминифер в том, что они получают кислород непосредственно из океанской воды и он идет на строительство их раковин из карбоната кальция. Исследования современных фораминифер показали, что, как только температура воды понижается, они начинают усваивать больше изотопов тяжелого кислорода — так называемая «положительная» тенденция. По мере потепления, наоборот, усваивается больше легкого кислорода, и фораминиферы становятся «отрицательными». Рассмотрев соотношение различных форм кислорода в раковинах фораминифер из донных проб, Эмилиани пришел в изумление: за последние 300 000 лет наблюдалась явная смена холодного и теплого климата. Форма температурной кривой совпадала с прогнозами, сделанными на основе орбитальной теории. Выходит, Миланкович был прав?
Но не все так просто. Действительно ли изотопы в фораминиферах отмечают температурные изменения? Исследования современных фораминифер это подтверждают, однако как обстояло дело во время древних ледниковых периодов? Не изменились ли с тех времен правила игры?
Ледниковый период отличается не только похолоданием, но и уменьшением испарения с поверхности океана. Чем дальше, тем больше тяжелых молекул воды остается в океане, поскольку молекулам, состоящим из легкого кислорода, испаряться в таких условиях легче. В высоких широтах эта испарившаяся влага конденсируется и выпадает в виде снега, формируя пространный ледяной покров. Другими словами, из океана извлекается преимущественно 16O, который затем запирается в ледяной корке, а в океанской воде повышается содержание 18O. Однако в межледниковый период все происходит с точностью до наоборот. В результате потепления с влагой испаряется больше тяжелого кислорода, а лед тем временем тает, возвращая обратно в океан скованный 16O. В результате содержание 18O в океанской воде падает. Таким образом, показатели содержания изотопов кислорода в фораминиферах за протяженные временные периоды можно мерить по объемам льда.