Квантовая магия
Шрифт:
Однако, несмотря на все преимущества квантового процессора в «пробирке», его потенциал практически исчерпан, поскольку измеряемый на выходе сигнал экспоненциально убывает с ростом числа кубитов. Оценки показывают, что предельным значением, когда еще можно что-то измерить, является 10–13 кубитов. Но, кроме этого технического, существуют и чисто физические ограничения. Дело в том, что косвенные спин-спиновые взаимодействия, необходимые для организации основных логических операций, сами по себе очень слабые. В результате время выполнения логических операций оказывается чрезвычайно большим, а создаваемый компьютер имеет небольшое быстродействие. В этом случае более перспективными оказываются твердотельные квантовые компьютеры на основе ЯМР, поскольку диполь-дипольныевзаимодействия ядерных спинов внесколько тысячраз превосходят косвенные спин-спиновые взаимодействия.
Использование в качестве кубитов уровней энерг ии ионов, захваченных ионными ловушками, создаваемыми в вакууме определенной конфигурацией электрического поля в условиях их лазерного охлаждения до микрокельвиновыхтемператур. Взаимодействие между заряженными ионами в одномерной цепочке этих ловушек осуществляется посредством возбуждения их коллективного движения, а индивидуальное управление ими — с помощью лазеров инфракрасного диапазона. Первый прототип квантового компьютера, соответствующий этим принципам, был предложен австрийскими физиками И. Циракоми П. Цоллеромв 1995 году. В настоящее время интенсивные экспериментальные работы ведутся в LANL и в Национальном Институте стандартов и технологии ( National Institute of Standards and Technology— NIST) в США. Преимущество такого подхода заключается в сравнительно простом индивидуальном управлении отдельнымикубитами. Основными же недостатками этого типа квантовых компьютеров являются необходимость создания сверхнизких температур, обеспечение устойчивости состояний ионов в цепочке, а также ограниченность возможного числа кубитов значением N< 40. На сегодняшний день установлен практически полный контроль над квантовым состоянием единичного иона в ловушке, и внимание экспериментаторов переключилось на системы из нескольких ионов с хорошо контролируемыми взаимодействиями между ними. Действие квантовых логических схем основано в данном случае на квантовой запутанности внутренних степеней свободы ионов (электронные возбуждения) и коллективного движения (колебательного возбуждения) запертых в ловушке ионов.
Использование в качестве кубитов зарядовых состояний куперовскихпарв квантовых точках [105] , связанных переходами Джозефсона, предложенное Д. В. Аверинымв 1998 году. Первый твердотельный кубитна основе этих принципов был создан в NEC Fund. Res. Lab. в Японии в 1999 году. Предполагается, что перспективность этого направления заключается в возможности создавать электронные квантовые устройства высокой степени интеграции на одном кристалле, при этом для управления кубитами не потребуются громоздкие лазерные или ЯМР-установки. Однако создание квантовых компьютеров по-прежнему сопряжено со многими трудностями — не решенным остается ряд важных проблем, в частности, устойчивости состояний кубитов и декогеренции.
105
Что такое «квантовые точки», можно прочитать на сайте S cientific. ru: http://www.scientific.ru/journal/news/0203/n120203.html.
В 2002 году появилось сообщение [106] , что исследователи из Висконсинского Университета в Мадисонесоздали первую в мире симуляцию архитектуры квантового компьютера, применив кремниевую технологию изготовления. Эта архитектура, в которой используется горизонтальное и вертикальное туннелированиечерез двойные верхние и нижние ворота, занимает на чипе 50 кв. нанометров. Группа исследователей пришла к выводу, что современное оборудование для кремниевого производства пригодно и для производства квантовых чипов, хотя они пока работают со скоростью 1 МГц из-за больших требований к импульсному генератору. В качестве квантового бита были выбраны направления спина электрона 1 — вверх, 0 — вниз. В ходе эксперимента проведены простейшие вычисления, для чего было объединено несколько квантовых точек. Однако для того, чтобы производить действительно «полезные» вычисления, в компьютер понадобится добавить еще около 1 миллиона квантовых точек.
106
http://www.cnews.ru/newtop/index.shtml?2002/08/07/134303.
Schrader D., DotsenkoI., KhudaverdyanM., MiroshnichenkoY., RauschenbeutelA., and MeschedeD., Phys. Rev. Lett. 93, 150501 (2004), http://www.scientific.ru/journal/news/1004/n211004.html;
AchermannM., PetruskaM. A., KosS., Smith D. L., KoleskeD. D., KlimovV. I., Nature 429, 642 (2004), http://www.scientific.ru/journal/news/0804/n260804.html;
ElzermanJ. M., Hanson R., Willemsvan BeverenL. H., WitkampB., VandersypenL. M. K., KouwenhovenL. P., Nature, 431, 431 (2004), http://www.scientific.ru/journal/news/0904/n030904.html.
В начале 2005 года в журнале «Успехи физических наук» (УФН) была опубликована большая обзорная статья академика К. А. Валиева «Квантовые компьютеры и квантовые вычисления», УФН 175(1), 3 (2005), в которой упоминаются следующие основные направления реализации квантовых вычислений (помимо ЯМР):
1. На ионах в одномерном ионном кристалле в ловушке Пауля.
2. В полупроводниковых кристаллах бесспинового моноизотопногокристалла кремния 28 Si, в котором атомы фосфора 31Р (кубиты) расположены в линейной цепочке (модель Кейна). Темп развития этого направления, признаваемого всеми весьма перспективным, определяется темпом нанотехнологическихразработок, необходимых для создания структур с нужными параметрами.
3. Кубиты на электронах в полупроводниковых квантовых точках. В качестве кубитов исследуются орбитальные или спиновые состояния одиночного электрона в квантовой точке.
4. Кубиты на сверхпроводниковых мезоструктурах. Здесь существуют два варианта: в первом — квантовая информация кодируется числом сверхпроводящих пар в квантовой точке, во втором — направлением сверхпроводящего тока в сквиде.
5. На одиночных атомах в микрорезонаторах. Двухуровневая система ( атом-кубит), связанная с осциллятором-фотоном в одной из мод колебаний резонатора. Этот метод предполагается использовать при разработке способов транспортировки атомных и фотонных кубитов, а также при передаче квантовой информации от атомных кубитов к фотонными обратно ( атом-фотонныйквантовый интерфейс).
6. С помощью линейных оптических элементов (оптический квантовый компьютер).
Все эти методы в той или иной мере уже реализованы экспериментально.
Есть также ряд перспективных идей:
1. Двумерный электронный кристалл в потенциальной ловушке (яме) вблизи поверхности жидкого гелия.
2. Двумерная решетка атомов в оптической ловушке, образованной стоячей волной интерферирующих лазерных пучков.
3. Анионы в двумерном электронном газе в полупроводниках в условиях дробного квантового эффекта Холла.
4. Квантовые клеточные автоматы в ферромагнитных (антиферромагнитных) структурах в кристаллах.
К наиболее существенным достижениям последнего времени можно отнести результаты двух экспериментальных работ в этой области, одновременно опубликованные в Nature(1 декабря 2005 года) [107] . Двум конкурирующим командам физиков из США и Австрии почти одновременно удалось запутать рекордное число индивидуальных частиц. Дитрих Лейбфридс коллегами из NIST в Колорадо запутали 6 ионов бериллия, в то время как Гартмут Хеффнерс сотрудниками из университета Инсбрука — 8 ионов кальция.
107
Leibfried D. et al., Creation of a six-atom « Schrodingercat» state, Nature 438, 639–642 (2005); H"affner H. et al., Scalable multiparticleentanglement of trapped ions, Nature 438, 643–646 (2005).