Чтение онлайн

на главную - закладки

Жанры

Квантовые миры и возникновение пространства-времени
Шрифт:

Смелая стратегия. Но с ней сразу же возникает проблема: явно создается впечатление, что волновые функции коллапсируют. Измеряя квантовую систему с распределенной волновой функцией, мы получаем конкретный ответ. Даже если представить, что волновая функция электрона – это диффузное облако, в центре которого находится ядро, в попытках рассмотреть электрон мы увидим вовсе не облако, а точечную частицу в конкретном месте. Если же мы незамедлительно снова посмотрим на электрон, то увидим его практически

на том же месте. Поэтому у первопроходцев квантовой механики были весьма серьезные основания полагать, что волновые функции коллапсируют, – ведь именно так все и выглядит.

Но вполне вероятно, что мы просто спешим с выводами. Вместо того чтобы исходить из увиденного и сразу пытаться изобрести теорию, начнем с аскетичной квантовой механики (описывающей лишь гладкую эволюцию волновых функций) и зададимся вопросом: что должны испытывать люди, живущие в мире, описываемом такой теорией?

Подумайте о том, что бы это могло значить. В предыдущей главе мы с осторожностью говорили о волновой функции как о некоем математическом черном ящике, из которого можно извлекать предсказания результатов экспериментов: волновая функция присваивает каждому конкретному результату амплитуду, и вероятность получить данный результат равна квадрату этой амплитуды. Макс Борн, предложивший данное правило, присутствовал на Сольвеевском конгрессе в 1927 году.

Теперь мы говорим о чем-то более глубоком и одновременно простом. Волновая функция – это не инструмент учета, а точное представление квантовой системы, как если бы набор координат и скоростей был бы представлением классической системы. Мир – это и есть волновая функция. Термин «квантовое состояние» можно использовать в качестве синонима «волновой функции», точно так же как набор координат и скоростей можно называть классическим состоянием.

Это очень серьезное утверждение, касающееся природы реальности. В обычной беседе, даже среди седовласых ветеранов квантовой физики, принято обсуждать такие понятия, как «координата электрона». Но предлагаемая точка зрения, при которой «всё есть волновая функция», подразумевает, что подобные разговоры уводят от сущности, причем в одном из основополагающих вопросов. Нет такой вещи, как «координата электрона». Есть только волновая функция электрона. Квантовая механика подразумевает принципиальное отличие между «тем, что мы можем наблюдать» и «тем, что есть на самом деле». Наши наблюдения не открывают ранее существовавшие факты, о которых мы просто не знали; в лучшем случае они дают крошечный срез гораздо более масштабной, фундаментально неизмеримой реальности.

Задумайтесь об идее, которую вам часто озвучивали: «Атомы почти полностью состоят из пустоты». Если взять за основу картину мира АКМ – это вопиюще неверное утверждение. Оно проистекает из упрямого стремления считать электрон крошечным классическим шариком, который носится кругами в волновой функции, а не признавать, что электрон –

это и есть волновая функция. В АКМ ничего нигде не носится: есть только квантовое состояние. В атомах нет пустоты; они описываются волновыми функциями, каждая из которых целиком заполняет атом.

Способ вырваться из наших «интуитивных» классических представлений – решительно отвергнуть идею о том, что электрон действительно имеет какую-то конкретную координату. Электрон находится в суперпозиции всех возможных координат, в которых мы можем его увидеть, и не привязан ни к какому конкретному местоположению до того самого момента, пока мы его там не увидим. С помощью термина «суперпозиция» физики подчеркивают, что электрон существует в комбинации всех координат, каждой из которых соответствует конкретная амплитуда. Квантовая реальность – это волновая функция; координаты и скорости, как в классической физике – лишь то, что мы можем наблюдать, когда исследуем эту волновую функцию.

Итак, согласно аскетичной квантовой механике, реальность квантовой системы описывается волновой функцией или квантовым состоянием, которое можно считать суперпозицией всех возможных результатов любого возможного наблюдения, которое мы могли бы провести. Как от этого перейти к досадной реальности, где кажется, что волновые функции коллапсируют, когда мы делаем такие измерения?

Для начала давайте немного внимательнее разберемся с утверждением «мы измеряем координату электрона». Что на самом деле включает в себя такой процесс измерения? Предположительно, нам понадобится некоторое лабораторное оборудование и чуточку экспериментаторской сноровки, но частности нас не волнуют. Всё, что нужно знать – есть некоторый измерительный прибор (камера или что-то еще), который каким-то образом взаимодействует с электроном, а затем позволяет считывать, где именно мы увидели электрон.

Вот и все, что позволяет нам узнать эксперимент, описываемый в учебнике по квантовой механике. Некоторые из ученых, первыми испробовавших этот подход, в том числе Нильс Бор и Вернер Гейзенберг, были готовы зайти немного дальше, говоря о том, что измерительный прибор следует считать классическим объектом, пусть даже наблюдаемый с его помощью электрон является квантово-механическим. Такое разграничение между элементами реальности, одни из которых приходится рассматривать с классической, а другие – с квантовой точки зрения, иногда называется «разрез Гейзенберга». Вместо признания, что квантовая механика фундаментальна, а классическая механика в подходящих условиях просто является хорошим приближением квантовой, в учебниках по квантовой механике классический мир ставится во главу угла как наиболее верный подход в рассуждениях о людях, камерах и других макроскопических объектах, взаимодействующих с микроскопическими квантовыми системами.

Конец ознакомительного фрагмента.

Поделиться:
Популярные книги

Неверный

Тоцка Тала
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Неверный

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII

Неудержимый. Книга XIX

Боярский Андрей
19. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIX

Отмороженный 11.0

Гарцевич Евгений Александрович
11. Отмороженный
Фантастика:
боевая фантастика
рпг
попаданцы
фантастика: прочее
фэнтези
5.00
рейтинг книги
Отмороженный 11.0

Сотник

Ланцов Михаил Алексеевич
4. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Сотник

Мастер 10

Чащин Валерий
10. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 10

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Ваше Сиятельство 6

Моури Эрли
6. Ваше Сиятельство
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 6

Пуля для солиста

Колычев Владимир Григорьевич
Детективы:
криминальные детективы
6.25
рейтинг книги
Пуля для солиста

Я граф. Книга XII

Дрейк Сириус
12. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я граф. Книга XII

Я еще не князь. Книга XIV

Дрейк Сириус
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще не князь. Книга XIV

Неудержимый. Книга XIII

Боярский Андрей
13. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIII

Царь царей

Билик Дмитрий Александрович
9. Бедовый
Фантастика:
фэнтези
мистика
5.00
рейтинг книги
Царь царей

Бастард Императора. Том 8

Орлов Андрей Юрьевич
8. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 8