Квантовый ум. Грань между физикой и психологией
Шрифт:
Для разработки и понимания представлений, лежащих в основе дифференциального исчисления, математике потребовалось время примерно от 1660 до 1830 гг. В нашем совместном путешествии мы, вместо того чтобы изучать историческое развитие дифференциального исчисления для понимания его основ, будем заново разрабатывать его сами.
Давайте на время обратимся к эмпирике. Подумайте о движении и скорости. Скорость – это мера ОР для обозначения того, как быстро вы можете проходить определенное расстояние. Если я иду со скоростью 3 километра в час, то буду способен проходить за 1 час 3 километра.
С одной точки зрения, это просто. В то же время это не
Чтобы продемонстрировать своим слушателям разницу между средней скоростью движения между двумя точками и мгновенной скоростью в данной точке, я обычно совершаю небольшую прогулку по аудитории, при этом говоря слушателям следующее: «Наблюдайте, как я двигаюсь по этой комнате. Здесь довольно тесно, но давайте считать, что я иду от стены рядом с доской, где я сейчас стою, до середины комнаты. Считайте мои шаги. Сколько шагов я, по-вашему, сделал?»
Один слушатель говорит что-нибудь вроде: «Вы прошли до центра двенадцать шагов». Тогда я спрашиваю: «Насколько быстро я шел?» Он говорит: «Не слишком быстро… Примерно три километра в час».
Обычно кто-нибудь спрашивает, какое отношение все это имеет к психологии и физике или шаманизму, и мне приходится просить слушателей потерпеть, пока мы некоторое время остаемся в общепринятой реальности.
Я спрашиваю слушателей, откуда им известно, что я шел со скоростью примерно 3 км/час? Ведь я не прошел 3 километра и не шел в течение целого часа! «Как вы можете говорить, что мне потребовался бы 1 час, чтобы пройти 3 километра, просто наблюдая, как я прохожу несколько метров за несколько секунд?» Слушатели дают правильный ответ – они угадывают скорость путем экстраполяции, усреднения моего движения.
Слово «усреднение» означает, что я проходил те несколько метров со средней скоростью 3 км/час. Потом я прошу слушателей снова понаблюдать, как я иду до середины комнаты и обратно, но на этот раз не в одном и том же темпе. Вместо этого, я останавливаюсь на полпути, чешу нос, а затем иду до середины комнаты и обратно более быстрым шагом.
Затем я говорю слушателям, что, хотя в среднем я по-прежнему делал 3 км/час, эти «3 км/час» представляют собой недостаточное описание того, что происходило на самом деле. Это неточное описание моей скорости. Как-никак, я останавливался на полпути, чтобы почесать нос. Средние значения упускают все интересные подробности путешествия.
Предельный переход
Средняя скорость представляет собой неполноценное описание быстроты моего движения при ходьбе. Скорость «3 км/час» ничего не говорит о темпе моего движения в каждой точке пути – это лишь усредненная скорость прохождения пути от начала до конца. Если я хочу иметь лучшее описание, мне нужно найти способ измерения моей скорости в каждой точке. Большинство из нас меньше интересует скорость, нежели опыт передвижения. Но физикам и полиции необходимо
Лишь в 1650 г. западные ученые наконец открыли способ измерения скорости в любой точке пространства и времени. Ньютон и Лейбниц хотели измерять непостоянный мир изменений движения и предложили радикальную идею, которою они назвали предельным переходом. Идея предельного перехода составляет основу дифференциального исчисления и, поскольку вся физика основывается на дифференциальном исчислении, идея предельного перехода занимает центральное место во всей физике.
Я говорю своим слушателям, что для того, чтобы понять идею предельного перехода, нам следует вернуться к подробностям моей ходьбы. Допустим, что расстояние от стены до середины помещения составляет около 10 метров. Я говорю, что если мы используем общепринятый способ измерения времени, например по часам на стене аудитории, то сможем определить длительность моего движения. Затем я снова прохожу эти 10 метров и вместе со всеми присутствующими замечаю, что на это у меня уходит 5 секунд.
Имея эту новую информацию о времени, мы можем подсчитать мою скорость. Разделив расстояние 10 метров на время 5 секунд, мы получаем скорость 2 метра в секунду. Теперь у нас есть средняя скорость движения между двумя точками, но мы по-прежнему хотим знать больше. Чтобы иметь точные данные, нам нужно придумать, как измерять мою скорость в каждой отдельной точке. Это тот же вопрос, на который пришлось отвечать Ньютону.
Я представляю себе, что Ньютон использовал нечто вроде следующего эксперимента. Вероятно, он думал: «Пусть человек идет, а мы будем определять его скорость с помощью точных часов, измеряя, сколько он проходит, скажем, за пару секунд. Затем будем уменьшать время. Позволим ему двигаться только очень небольшое время, например полсекунды. Тогда мы снова можем находить его скорость в течение более коротких промежутков времени и на более коротких расстояниях. Нам нужно лишь разделить расстояние, которое он проходит за эти полсекунды и получить его среднюю скорость».
Рис. 11.1. Короткий путь
Потом Ньютона осенило. Он, должно быть, подумал: зачем ограничиваться тем, что мы можем измерять в настоящее время? Почему думать только о наших часах и линейках, которые не так уж точны? Предположим, что наши измерительные инструменты гораздо лучше и могут измерять очень маленькие расстояния и времена, вроде одной миллионной доли сантиметра и одной миллиардной доли секунды. Представьте себе прогулку длительностью в долю секунды!
Рис. 11.2. Очень маленькая прогулка
Зачем ограничиваться долей секунды? Почему не идти дальше в мысленном эксперименте, доводя его до предела? Давайте вообразим измерение расстояния, которое кто-то проходит за бесконечно малое время, приближающееся к нулю, поскольку в это микроскопическое количество времени мы чрезвычайно близко подходим к его скорости в данной точке пространства и времени, что и составляет нашу цель.