Чтение онлайн

на главную - закладки

Жанры

Квантовый ум. Грань между физикой и психологией
Шрифт:

Рис. 11.3. Бесконечно короткий путь

В течение этого бесконечно малого времени человек продвинется очень ненамного. Хотя доля секунды коротка, мы все равно можем сказать, что он продвинулся на некоторое расстояние, и, коль скоро никто не пытается действительно точно измерять это расстояние, мы можем говорить, что измеряем расстояние и время в одной точке. Поскольку скорость –

это расстояние, деленное на время, мы получаем скорость более или менее в одной данной точке.

Но, возможно, вы очень придирчивый читатель или физик и говорите, что это невозможно. Одна миллиардная сантиметра – это все еще расстояние между двумя точками, а не одна точка. Я представляю себе, что Ньютон сказал бы: «Мы еще не закончили эксперимент. Доведем эксперимент до предела во времени, когда количество времени приближается к нулю. Когда мы подходим к нулевому времени движения, мы как раз и будем примерно в одной точке».

Математиков не беспокоит, можете ли вы на самом деле что-либо измерить; они просто стараются быть как можно более последовательными. Поэтому Ньютон разработал идею скорости в точке: скорость – это пройденное пространство, деленное на время, когда количество времени, требуемое для этого маленького путешествия, приближается к нулю. Повторим это еще раз:

В пределе, когда расстояние и время между двумя точками становятся очень малыми и приближаются к нулю, расстояние, деленное на время, представляет собой скорость в любой данной точке.

Это понятие предельного перехода позволяло Ньютону говорить, что скорость в данной точке можно определять путем деления расстояния на время, когда это время, в пределе, приближается к нулю (точное выражение Ньютона дано в примечании 2).

Возможно, вас интересует, почему я трачу так много времени, говоря об этих подробностях. Большинство физиков и математиков довольствуются тем, что сказано выше. Мы определили скорость в точке – это отношение расстояния ко времени, когда рассматриваемое время приближается к нулю. Мы дали некоторые советы относительно приблизительного измерения скорости – использовать точные линейку и часы и делать все, что в ваших силах. Чего же еще можно хотеть?

Но нам все еще есть, о чем задумываться. Я хочу знать больше о том, что в точности происходит, когда мы переходим от движения между двумя местами к плавному движению в данной точке. Сегодня нам известно, что измерение малых расстояний представляет собой проблему. Когда мы доходим до мгновенных и точных положений, нам приходится измерять вещи размером с атомы, которые даже невозможно увидеть. Когда вещи так малы, мы не можем измерять точно. Нам препятствует физическая реальность.

Иными словами, такой вещи, как точка, не существует! Точка – это понятие общепринятой реальности, плод математического воображения. В физической реальности не существует точек. То, что мы когда-то считали точкой, на самом деле содержит в себе миллионы атомов.

Тем не менее, чисто математическое мышление, в отличие от физики, не привязано к измерениям. Математика может свободно странствовать в сфере идей. И математика предполагает, что существует нечто вроде скорости в данной точке, даже хотя мы знаем, что в общепринятой реальности мы, в лучшем случае, можем

получать среднюю скорость движения между двумя точками, когда время движения крайне мало. Понятие скорости в точкеэто фантазия, а не реальность.

Лейбниц и Ньютон выбирались из этого безвыходного положения говоря, что когда время, используемое нами для измерения, становится все меньше, в пределе, когда количество времени приближается к нулю, возникает совершенно новый мир. Какого рода мир? Мир, в котором больше не нужно измерять что-либо между двумя точками и следует интересоваться только плавным движением в самой точке. Ньютон называл плавное движение или скорость в данной точке «флюксией», что означает «течение» или «поток»3. Ньютон совершал переход из мира больших шагов к меньшим шагам, потом к крохотным шагам и, наконец, к плавному движению – флюксии.

Позднее математики заменили термин Ньютона «флюксия» на «производную». Эта смена названия означает, что изучающие исчисление больше не слышат термин «флюксия» и рискуют забыть, что производные применяются к миру течения. Точнее говоря, флюксия или производная определяется в той таинственной точке, где мир постепенного движения сливается с миром непрерывного изменения.

Производная – это суть исчисления, математическое описание движения, имеющее решающее значение для всей науки и, в особенности, для физики. На этом этапе вы уже усвоили основы исчисления. Нам просто нужно помнить, что флюксия, позднее названная производной, представляет собой темп изменения чего-либо (например, расстояния) в данной точке в терминах чего-либо другого (например, времени).

Мировоззрения состояния и процесса

Короче говоря, создание понятия флюксии, или производной, то есть скорости в данной точке, вело к смене представлений о мире. Когда мы измеряем более короткие расстояния и меньшие времена, мир внезапно меняется. Мы переходим из сферы материальной измеримости и общепринятой реальности в сферу чистой мысли и течения.

Скорость – это математическое понятие, описывающее мгновенный темп изменения расстояния. Но это понятие невозможно совершенно точно измерить в данной точке в общепринятой реальности.

Мы перешли от фиксированной, или стационарной (от слова состояние), ориентации оценки дискретных шагов, точно измеряемых в терминах расстояния и времени, к неизмеримому миру с процессуальной ориентацией.

Состояние и процесс представляют собой совершенно разные ориентации и типы осознания. Ориентация на состояние требует выхода из потока и оценки или измерения того, в какой точке вы находитесь. Ориентация на состояние требует, чтобы мы замечали: «Сейчас я здесь, сейчас здесь, а сейчас здесь».

Давайте снова подумаем о танце. Чтобы научиться танцевать, вы поочередно заучиваете отдельные шаги. Это мир фиксированных ориентаций на состояние. Но зная эти шаги, вы можете по-настоящему танцевать, и танец отличается от повторения надлежащих шагов. В танце вы забываете о шагах и просто плавно движетесь; когда вы входите в другую ориентацию, шаги в большей или меньшей степени исчезают. Ваше осознание больше не сосредоточивается на шагах. Теперь у вас другое осознание – осознание танцора!

Поделиться:
Популярные книги

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Хозяйка покинутой усадьбы

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка покинутой усадьбы

Инкарнатор

Прокофьев Роман Юрьевич
1. Стеллар
Фантастика:
боевая фантастика
рпг
7.30
рейтинг книги
Инкарнатор

Вернуть Боярство

Мамаев Максим
1. Пепел
Фантастика:
фэнтези
попаданцы
5.40
рейтинг книги
Вернуть Боярство

Офицер-разведки

Поселягин Владимир Геннадьевич
2. Красноармеец
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Офицер-разведки

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума

Инвестиго, из медика в маги. Том 6. Финал

Рэд Илья
6. Инвестиго
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Инвестиго, из медика в маги. Том 6. Финал

Моя (не) на одну ночь. Бесконтрактная любовь

Тоцка Тала
4. Шикарные Аверины
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Моя (не) на одну ночь. Бесконтрактная любовь

Имя нам Легион. Том 8

Дорничев Дмитрий
8. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 8

Зауряд-врач

Дроздов Анатолий Федорович
1. Зауряд-врач
Фантастика:
альтернативная история
8.64
рейтинг книги
Зауряд-врач

Измена

Рей Полина
Любовные романы:
современные любовные романы
5.38
рейтинг книги
Измена

Душелов. Том 3

Faded Emory
3. Внутренние демоны
Фантастика:
альтернативная история
аниме
фэнтези
ранобэ
хентай
5.00
рейтинг книги
Душелов. Том 3

Бастард Императора. Том 3

Орлов Андрей Юрьевич
3. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 3

Ни слова, господин министр!

Варварова Наталья
1. Директрисы
Фантастика:
фэнтези
5.00
рейтинг книги
Ни слова, господин министр!