Чтение онлайн

на главную - закладки

Жанры

Кванты и музы

Радунская Ирина Львовна

Шрифт:

Отчаянные попытки крупнейших физиков рассеять призрак ультрафиолетовой катастрофы, сочетать теорию с опытом, не приводили к успеху. Выход в канун прошлого века нашёл немецкий физик Планк. Впоследствии, в своей нобелевской лекции, он говорил:

«После нескольких недель самой напряжённой в моей жизни работы тьма, в которой я барахтался, озарилась молнией, и передо мною открылись неожиданные перспективы».

Планк понял, что, несмотря на кажущуюся абсурдность его догадки, на очевидную противоречивость привидевшегося ему процесса, обмен энергией между световыми волнами и веществом происходит не непрерывно, на чём основывались прежние формулы, а малыми конечными

порциями. Это вполне соответствовало бы ньютоновским корпускулам, но это никак невозможно представить, если продолжать считать, что свет — волны. Кроме того, если свет — волны, давно произошла бы ультрафиолетовая катастрофа, из мира ушло бы всё тепло.

Значит, энергия в природе передаётся не непрерывно, а толчками, квантами. Именно такой механизм существования энергии спасает мир от гибели…

Эта сенсация разделила всех учёных на два лагеря — верящих в точку зрения Планка и яростно ей сопротивляющихся. Сам Планк оказался во втором лагере. Он себе не верил…

Положение ещё более осложнилось неудачными попытками объяснить явление фотоэффекта, открытое также в конце XIX века Столетовым. Оно заключалось в том, что под действием света из металла вылетали электроны, вылетали подобно осколкам камня из стены, в которую ударяет пуля. Было очевидно, что свет способен вырывать электроны из поверхности металла, освобождать их поодиночке.

Снова опыт заставлял учёных отнестись серьёзно к мысли о прерывистой сущности света, снова намекал на его дробность.

В этих опытах по взаимодействию света и вещества была одна многозначительная тонкость: вероятность вылета электрона зависела не от силы света, а от его цвета. Более того, если цвет приближался к красному концу спектра, наступал момент, когда электроны не вылетали из металла вовсе — как ни увеличивали экспериментаторы интенсивность облучения.

Учёные в недоумении разводили руками — сильный красный свет ничего не мог поделать с электронами, тогда как фиолетовый, даже совсем слабенький, легко и непринуждённо вылущивал из тела металла электрон за электроном! Учёные ещё просто не осознали, что кван ты света, расположенного ближе к фиолетовому концу солнечного спектра, имеют большую энергию, чем кванты красного, розового и других более «тёплых» световых лучей.

Им надо было решить сразу две загадки: почему фотоэффект зависит от цвета облучающего вещество света и как свет, если он волна, взаимодействует с каждым электроном по отдельности?

Явление фотоэффекта не поддавалось разумному объяснению, если упорно стоять на одной позиции: считать свет волнами. Так могло быть только при двух условиях. Первое — если бомбардировка металла производится «пулями» света — тогда каждая «пуля» может взаимодействовать с электроном один на один. Второе условие — если световые «пули» обладают разной энергией. И этой энергии должно хватить для вырывания электрона. То есть энергия «пули» должна соответствовать или быть больше энергии, с которой электрон удерживается в теле металла.

Так обстоятельства вынудили физиков пойти на компромисс: признать, что волна света (хотя бы перед тем, как ударить в металл) дробится на отдельные цветные «пули». И каждая «пуля» выбирает себе жертву по «зубам», вернее, по цвету.

Это был только подступ к истине. Истину понял лишь Эйнштейн. Он предположил, что свет вовсе не дробится на отдельные порции перед тем, как упасть на металл, а существует в такой форме. Это его естественное состояние, его природа. С самого момента излучения, то есть рождения, он представляет собой отдельные порции электромагнитной энергии — кванты света, или фотоны,

как их теперь называют по предложению Комптона.

Эйнштейна не смущало, что на основе фотонов, так же как при помощи ньютоновых корпускул, невозможно объяснить сразу все оптические явления: и огибание светом препятствий, и радужные круги в тонких плёнках разлитой нефти, и существование предельного увеличения микроскопа, и много других фактов, естественно вытекающих из волновой теории. Зато принятие квантовой структуры света аннулировало ультрафиолетовую катастрофу, нелепости фотоэффекта и ряд других парадоксов более глобального характера.

Итак, в обиход науки вошёл квант света, элементарная частица света. Но трудности в понимании природы света, его взаимоотношений и связи с материей не иссякали.

Начиная с 1706 года, вслед за малоизвестным Френсисом Хоксби, физики продолжали изучать красивое свечение, возникавшее при прохождении электрических разрядов через разреженные газы. Уильям Крукс в последней четверти минувшего века довёл эти исследования до такой полноты, что не сомневаясь утверждал: свечение вызывается движением частиц. Но каких? Ведь в сосудах не было других частиц, кроме молекул газа… Тут была тайна, более глубокая, чем могло показаться с первого взгляда.

Большинство учёных в то время склонялось к волновой теории этого свечения. Некоторые видели в нём новый вид излучения, поэтому за ним укрепилось наименование катодных лучей…

Крукс был ближе всех к истине. Но не понял её до конца.

Прошло почти два столетия после первого опыта Хоксби, когда его начинание привело к результатам, о которых он не помышлял и которые, наверное, ошеломили бы его. Оказалось, что, пропуская электрический разряд через газ, он, не подозревая об этом, получал электроны!

В 1895 году в Париже Жан Перрен, проводя опыты с катодными лучами, поставил на их пути магнит, и эти лучи отклонились так, как если бы они состояли из частиц, несущих отрицательный заряд. Контрольные опыты показали, что катодные лучи вовсе не нейтральные молекулы, о которых писал Крукс, а гораздо более лёгкие частицы, заряженные отрицательно.

Обычно считают, что именно опыт Перрена привёл к рождению электроники, хотя термин «электрон», предложенный за четыре года до того, не был связан с этим опытом. Джозеф Джон Томсон через два года определил для частиц, участвовавших в опыте Перрена, отношение их заряда к массе, а затем и величину этого заряда. Так впервые были измерены характеристики индивидуальной элементарной частицы. Конечно, не её имели в виду древние атомисты, не о ней говорил Фарадей, заключивший из опытов по электролизу о существовании в жидкостях заряженных частиц. Не эти частицы участвовали в явлениях, наблюдаемых при разнообразных опытах с газами и жидкостями. Электрон раскрыл людям глаза на то, что атомы, считавшиеся издревле самой малой частицей материи, сами имеют сложную структуру. Теперь электрон был признан мельчайшим кирпичом мироздания, получив титул первочастицы.

Так на рубеже XX века неделимые атомы греческих философов окончательно сошли со сцены, уступив место не новым атомам, а новым гипотетическим неделимым элементарным частицам, из которых состоят все атомы химических элементов.

И тут учёные вспомнили об одной отвергнутой, забытой гипотезе. Еще в 1815 году некто Праут на основании законов Гей-Люссака и своих измерений установил теперь всем очевидный, а для того времени почти мистический факт: атомные веса многих химических элементов кратны весу атома водорода… Элементы разные, свойства разные, а атомные веса почему-то связаны между собой….

Поделиться:
Популярные книги

Я еще князь. Книга XX

Дрейк Сириус
20. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще князь. Книга XX

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Ты - наша

Зайцева Мария
1. Наша
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Ты - наша

Брачный сезон. Сирота

Свободина Виктория
Любовные романы:
любовно-фантастические романы
7.89
рейтинг книги
Брачный сезон. Сирота

Болотник 3

Панченко Андрей Алексеевич
3. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 3

Часовой ключ

Щерба Наталья Васильевна
1. Часодеи
Фантастика:
фэнтези
9.36
рейтинг книги
Часовой ключ

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2

Архил...? Книга 2

Кожевников Павел
2. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...? Книга 2

Найдёныш. Книга 2

Гуминский Валерий Михайлович
Найденыш
Фантастика:
альтернативная история
4.25
рейтинг книги
Найдёныш. Книга 2

Хозяйка лавандовой долины

Скор Элен
2. Хозяйка своей судьбы
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Хозяйка лавандовой долины

Зайти и выйти

Суконкин Алексей
Проза:
военная проза
5.00
рейтинг книги
Зайти и выйти

Вечный. Книга VI

Рокотов Алексей
6. Вечный
Фантастика:
рпг
фэнтези
5.00
рейтинг книги
Вечный. Книга VI

Инквизитор Тьмы 5

Шмаков Алексей Семенович
5. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 5

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия