Личность и Абсолют
Шрифт:
6. Однако в этом нашем логическом анализе алгебраического числа может крыться одна неясность, которую необходимо сейчас же устранить. Алгебраическое число, сказали мы, есть число, хранящее в себе потенцию целого числа. Вместе с тем алгебраическим числом мы называем такое, которое отображает в себе свое неразвернутое (так сказать, одномерное) инобытие. Эти два определения, по–нашему, тождественны. Но пожалуй, их тождественность еще не вполне ясна из предыдущего. Тут необходимо обратить внимание на то, что одномерность инобытия есть ведь попросту единство становления, или, другими словами, единообразие его направления. Наличие такого инобытия в недрах числа обеспечивает возможность для него изменяться в прямо противоположные стороны. Если данное число мыслится полученным в результате той или другой арифметической операции (или определенной комбинации этих операций), то наличие в нем его одномерного инобытия есть не что иное, как возможность произвести над ним действие, обратное тому или тем, которые над ним производились. Если число было суммой двух других чисел, то наличие в нем одномерного инобытия обеспечивает возможность произвести из него вычитание одного из двух этих других чисел. Благодаря этому всеобщему принципу можно положительное число превратить в отрицательное
Итак, сказать ли, что число сводимо к целому числу, или сказать, что оно хранит в себе одномерно–инобытийную потенцию, — это действительно есть одно и то же.
7. Так как мы рисуем сейчас алгебраическое число как некий общий тип числа, то нам нет нужды входить в рассмотрение того, что в математике называется алгебраической областью или алгебраическим полем (его называют также алгебраическим телом), хотя только эта отрасль математики показала бы нам подробно структуру алгебраических чисел. Мы не будем здесь делать этого, тем более что «арифметической теории алгебраических чисел» нам еще придется коснуться в своем месте.
8. А теперь на очереди тот тип числа, который является диалектической противоположностью алгебраического числа. Этот новый тип будет тоже выразительным, типом, как и алгебраическое число, но здесь мы найдем выражение совсем иной структуры. Из предыдущего сама собой напрашивается идея построить такое число, которое бы, храня в себе свое инобытие (т. е. являясь выразительным), содержало его не в виде простой, одномерной положенности, но развертывала бы его в сложную, многомерную структуру. То становление, которое приносится инобытием, в свою очередь должно вступать в новое становление, получать усложненность, зависящую от привнесения в него еще новых, не зависящих от него моментов. Такая иррациональность уже не может равномерно расстилаться как результат простого извлечения корня. Она сама перешла здесь в свое инобытие, т. е. в нее вплетены моменты, не зависящие от извлечения корня и—тем более—не зависящие ни от какой другой арифметической операции. Такая иррациональность называется трансцедентной; и такие числа, данные в своем соотношении с многомерно–становящимся инобытием, называются трансцедентными.
К анализу этой труднейшей и темнейшей из всей математики числовой категории мы сейчас и приступим.
1. Обычное определение трансцедентного числа в математике гласит: трансцедентное число есть то, которое не является корнем никакого уравнения с целыми коэффициентами. Это определение дается по методам того восточного человека, который, желая описать Карапета, указывает на Аванеса и говорит: «Совсем не похож!» Предоставим подобные методы кафедральным академикам и попробуем сами разобраться в этой проблеме, базируясь на тех весьма немногочисленных математических исследованиях, которые относятся к этой области. Но сначала формулируем трансцедентное число как общефилософскую категорию, как она получается в общедиалектическом контексте, — чтобы не потонуть в математической схоластике и формализме, — а потом уже посмотрим, что дает в этом смысле сама математика.
2. Итак, трансцедентное число есть число, соотнесенное со своим инобытием в условиях развернутости (или многомерности) этого инобытия. Уточним это общее определение, полученное еще в конце предыдущего параграфа.
a) Самым главным или по крайней мере исходным пунктом этого определения является соотнесенность числа с инобытием. Следовательно, берем какое–нибудь (алгебраическое) число и берем его отношение к его «инобытию», т. е. к какому–нибудь другому числу. Это отношение двух чисел должно быть все время в центре нашего внимания.
b) Это отношение, однако, должно быть нами взято не просто как таковое. Наше определение трансцедентного числа гласит, что инобытие, привлекаемое здесь, само переходит в свое инобытие, в свое становление. Следовательно, и все только что взятое нами отношение двух чисел также должно перейти в свое инобытие, в свое становление. А это значит, что оно должно осложниться каким–нибудь действием или рядом действий, в результате чего оно потерпело бы ту или иную деформацию.
c) Достаточно ли этого? Если мы остановились бы только на этом, то у нас ничего и не было бы, кроме какого–то отношения двух целых чисел, деформированного той или иной арифметической операцией. Ни о какой трансцедентности не было бы ни слуху ни духу. В чем же дело? Для трансцедентности числа надо, чтобы само число вмещало в себя эту свою многомерную соотнесенность с инобытием. Значит, по меньшей мере эта соотнесенность должна быть прибавлена к самому числу. Мы должны рассматривать само число и в нем самом находить его соотнесенность с инобытием. Не может быть так, что число существует где–то само по себе, а его соотнесенность с инобытием где–то в другом месте, отдельно. Тогда получилось бы просто два разных числа, и притом алгебраических (если не прямо арифметических), и больше ничего. Следовательно, для трансцедентности необходимо сложить само число с его инобытийной соотнесенностью.
d) Но не получим ли мы и в этом случае опять–таки то же самое алгебраическое (или арифметическое) число? Несомненно получим, если остановимся только на этом. Сумма двух алгебраических чисел есть опять число алгебраическое. Что же мы должны сделать еще новое, чтобы приблизиться к этой неуловимой числовой трансцедентности? Обратим внимание на момент развернутости инобытия, о котором мы говорили. Философский (или, что то же, диалектический) смысл этого развертывания заключается не в чем ином, как в противополагании такому инобытию, которое дано как простой акт полагания. Что значит перейти
е) Указанное положение дела, однако, обязывает ко многому. Всякая ли бесконечность становления может иметься здесь в виду? Если мы будем без разбора, как попало, нагромождать одно становление за другим, то, во–первых, мы получим не что иное, как опять–таки арифметико–алгебраические числа, с тою только разницей, что их теперь будет бесконечное количество. А во–вторых, трансцедентного числа не получится еще и потому, что оно, как и всякое число, должно быть чем–то простым, а не распадаться на то или иное количество взаимно диспаратных операций. Эти операции могут им предполагаться, но тогда оно должно содержать имманентно своей структуре некий единообразный и простой закон этих операций. Напр., дробь
Этим законом развертывания становления для трансцедентного числа является понятие предела. Становление по сути своей, по характеру своего развертывания беспредельно. Но это не мешает ему иметь тот или иной предел, который характеризовал бы тот или иной метод данного становления. Беспредельность становления требует только, чтобы оно, если его рассматривать как таковое, нигде не останавливалось и чтобы тем самым не перестало быть самим собою и нё перешло в ставшее. Но это значит только то, что предел становления не может наличествовать в нем самом. Если этот предел наличествует вне самого процесса становления и, следовательно, предопределяет не его абсолютные границы (остановку становления), а только лишь характер и метод его развертывания, то такому пределу становление нисколько не противоречит и даже, наоборот, от него–то и получает определенность своей структуры.
Итак, трансцедентное число должно быть пределом всех своих многомерно–инобытийных становлений или даже пределом объединения некоего алгебраического числа со всем его многомерно–инобытийным становлением.
2. Необходимо отметить, что только после введения этого последнего момента мы имеем право говорить об энергийно–эманативной выраженности трансцедентного числа. Когда шла речь о потенциальности алгебраического числа, то все дело упрощалось тем, что не нужно было реально производить никаких действий над этим числом или, точнее (поскольку в реальном производстве этих действий не нуждается также и трансцедентное число), не нужно было фиксировать реальный характер этих действий, а достаточно было указать только их общую арифметико–алгебраическую природу. Это и привело нас к тому, что мы просто постулировали одномерно–инобытийную соотнесенность как потенцию. В случае же трансцедентного числа мы, хотя и по–прежнему не нуждаемся в реальном производстве всех операций, все же, поскольку они реально предполагаются, должны иметь о них конкретное представление. А так как это последнее по содержанию и есть само определяемое нами число, то мы вынуждены в самом этом числе или, вернее, самим этим числом фиксировать закон, или метод, развертывания всех относящихся сюда операций. Вместе с тем и благодаря этому трансцедентное число оказывается не просто потенцией, но уже реальной мощью, развернутой энергией всех своих инобытийных судеб и даже, больше того, развернутой энергией всех своих инобытийных соотношений в сфере осуществления этих судеб. Трансцедентное число не только ушло в инобытие, оно ушло в бесконечную даль инобытия; и оно не просто как–то унеслось к своему инобытию, но определенным образом соотносится с инобытием решительно в каждый отдельный момент своего инобытийного существования; и оно не просто соотносится там и здесь в отдельные бесконечные моменты, но сразу отпечатлело на себе раз навсегда, однажды на всю вечность, все эти свои соотнесенности в сфере бесконечных скитаний, всю стихию непрерывно менявшейся самоориентации в беспредельных глубинах инобытийного становления. Оно есть мгновенно данное предображение всех своих вершинных судеб в темной области инобытия, и оно—тот вечный предел, который объемлет в себе, и притом в одной точке, всю бездну возможных числовых самоотрицаний.