Чтение онлайн

на главную - закладки

Жанры

Шрифт:

6. Однако в этом нашем логическом анализе алгебраического числа может крыться одна неясность, которую необходимо сейчас же устранить. Алгебраическое число, сказали мы, есть число, хранящее в себе потенцию целого числа. Вместе с тем алгебраическим числом мы называем такое, которое отображает в себе свое неразвернутое (так сказать, одномерное) инобытие. Эти два определения, по–нашему, тождественны. Но пожалуй, их тождественность еще не вполне ясна из предыдущего. Тут необходимо обратить внимание на то, что одномерность инобытия есть ведь попросту единство становления, или, другими словами, единообразие его направления. Наличие такого инобытия в недрах числа обеспечивает возможность для него изменяться в прямо противоположные стороны. Если данное число мыслится полученным в результате той или другой арифметической операции (или определенной комбинации этих операций), то наличие в нем его одномерного инобытия есть не что иное, как возможность произвести над ним действие, обратное тому или тем, которые над ним производились. Если число было суммой двух других чисел, то наличие в нем одномерного инобытия обеспечивает возможность произвести из него вычитание одного из двух этих других чисел. Благодаря этому всеобщему принципу можно положительное число превратить в отрицательное

и обратно, целое—в дробное и обратно, рациональное—в иррациональное и мнимое и обратно. Но так как основой всяких вообще операций является обыкновенный счет по натуральному ряду, т. е. по всем возможным целым числам, то и возникает потребность говорить о числах, так или [иначе) сводимых к целому числу. Однако для этого сведёния требуется только наличие в данном числе одномерно–инобытийной потенции. Такое инобытие действует просто как сила, выставляющая новые числа в отношении данного, причем эти числа обеспечивают изменяемость данного числа в самых разнообразных, и в особенности в противоположных, направлениях. Максимальное изменение, которое тут может произойти с числом, — это вовлечение его в стихию чистого становления, но последнее тут всегда дано именно в чистейшем, беспримесном виде, как голый принцип, так что рождающаяся здесь иррациональность есть только результат извлечения корня.

Итак, сказать ли, что число сводимо к целому числу, или сказать, что оно хранит в себе одномерно–инобытийную потенцию, — это действительно есть одно и то же.

7. Так как мы рисуем сейчас алгебраическое число как некий общий тип числа, то нам нет нужды входить в рассмотрение того, что в математике называется алгебраической областью или алгебраическим полем (его называют также алгебраическим телом), хотя только эта отрасль математики показала бы нам подробно структуру алгебраических чисел. Мы не будем здесь делать этого, тем более что «арифметической теории алгебраических чисел» нам еще придется коснуться в своем месте.

8. А теперь на очереди тот тип числа, который является диалектической противоположностью алгебраического числа. Этот новый тип будет тоже выразительным, типом, как и алгебраическое число, но здесь мы найдем выражение совсем иной структуры. Из предыдущего сама собой напрашивается идея построить такое число, которое бы, храня в себе свое инобытие (т. е. являясь выразительным), содержало его не в виде простой, одномерной положенности, но развертывала бы его в сложную, многомерную структуру. То становление, которое приносится инобытием, в свою очередь должно вступать в новое становление, получать усложненность, зависящую от привнесения в него еще новых, не зависящих от него моментов. Такая иррациональность уже не может равномерно расстилаться как результат простого извлечения корня. Она сама перешла здесь в свое инобытие, т. е. в нее вплетены моменты, не зависящие от извлечения корня и—тем более—не зависящие ни от какой другой арифметической операции. Такая иррациональность называется трансцедентной; и такие числа, данные в своем соотношении с многомерно–становящимся инобытием, называются трансцедентными.

К анализу этой труднейшей и темнейшей из всей математики числовой категории мы сейчас и приступим.

§ 110. Трансцедентное число (диалектическая категория).

1. Обычное определение трансцедентного числа в математике гласит: трансцедентное число есть то, которое не является корнем никакого уравнения с целыми коэффициентами. Это определение дается по методам того восточного человека, который, желая описать Карапета, указывает на Аванеса и говорит: «Совсем не похож!» Предоставим подобные методы кафедральным академикам и попробуем сами разобраться в этой проблеме, базируясь на тех весьма немногочисленных математических исследованиях, которые относятся к этой области. Но сначала формулируем трансцедентное число как общефилософскую категорию, как она получается в общедиалектическом контексте, — чтобы не потонуть в математической схоластике и формализме, — а потом уже посмотрим, что дает в этом смысле сама математика.

2. Итак, трансцедентное число есть число, соотнесенное со своим инобытием в условиях развернутости (или многомерности) этого инобытия. Уточним это общее определение, полученное еще в конце предыдущего параграфа.

a) Самым главным или по крайней мере исходным пунктом этого определения является соотнесенность числа с инобытием. Следовательно, берем какое–нибудь (алгебраическое) число и берем его отношение к его «инобытию», т. е. к какому–нибудь другому числу. Это отношение двух чисел должно быть все время в центре нашего внимания.

b) Это отношение, однако, должно быть нами взято не просто как таковое. Наше определение трансцедентного числа гласит, что инобытие, привлекаемое здесь, само переходит в свое инобытие, в свое становление. Следовательно, и все только что взятое нами отношение двух чисел также должно перейти в свое инобытие, в свое становление. А это значит, что оно должно осложниться каким–нибудь действием или рядом действий, в результате чего оно потерпело бы ту или иную деформацию.

c) Достаточно ли этого? Если мы остановились бы только на этом, то у нас ничего и не было бы, кроме какого–то отношения двух целых чисел, деформированного той или иной арифметической операцией. Ни о какой трансцедентности не было бы ни слуху ни духу. В чем же дело? Для трансцедентности числа надо, чтобы само число вмещало в себя эту свою многомерную соотнесенность с инобытием. Значит, по меньшей мере эта соотнесенность должна быть прибавлена к самому числу. Мы должны рассматривать само число и в нем самом находить его соотнесенность с инобытием. Не может быть так, что число существует где–то само по себе, а его соотнесенность с инобытием где–то в другом месте, отдельно. Тогда получилось бы просто два разных числа, и притом алгебраических (если не прямо арифметических), и больше ничего. Следовательно, для трансцедентности необходимо сложить само число с его инобытийной соотнесенностью.

d) Но не получим ли мы и в этом случае опять–таки то же самое алгебраическое (или арифметическое) число? Несомненно получим, если остановимся только на этом. Сумма двух алгебраических чисел есть опять число алгебраическое. Что же мы должны сделать еще новое, чтобы приблизиться к этой неуловимой числовой трансцедентности? Обратим внимание на момент развернутости инобытия, о котором мы говорили. Философский (или, что то же, диалектический) смысл этого развертывания заключается не в чем ином, как в противополагании такому инобытию, которое дано как простой акт полагания. Что значит перейти

в противоположность простого акта полагания? Это значит перейти в сплошно–неразличимый акт полагания, в алогическоестановление акта полагания. Следовательно, наше инобытие, с которым соотносится изучаемое число, должно быть не просто ординарным актом, создающим ту или [иную ] соотнесенность; и эта соотнесенность не должна быть чем [-то] устойчивым, как любое арифметическое отношение двух чисел, но она должна уплыть в становление, уйти в нерасчлененную даль все новых и новых становлений. А это значит, что и оба момента, из которых складывается эта соотнесенность, т. е. и первоначальное отношение данного числа к другому, и последующая модернизация этого отношения через приобщения к нему еще нового инобытия, оба эти момента должны уйти в бесконечность становления. Если этого не будет, наш принцип многомерной инобытийности останется только на стадии простого акта полагания, т. е. опять ничем не будет отличаться от принципа алгебраического числа. У нас будет введено новое инобытие в отношении старого, но это инобытие коснется только содержания старого инобытия; оно его единовременно и единообразно деформирует и тем самым только заменит одно арифметико–алгебраическое отношение другим, и больше ничего. А полнота диалектического противоположения требует, чтобы у нас выросла не только антитеза содержания первоначального отношения, но и антитеза самого его факта, антитеза самого принципа этого отношения. А тогда необходимо, чтобы и само первоначальное соотношение числа с его инобытием, и дальнейшая модернизация его на новое соотношение—оба ушли в стихию становления, и так как становление нерасчлененно и неопределенно, то и—в стихию неопределенного, беспредельного становления. Только тогда мы выполним задание, лежащее в основе диалектического отрицания инобытийности, характерной для алгебраического числа; и только тогда получим здесь действительно развернутое становление.

е) Указанное положение дела, однако, обязывает ко многому. Всякая ли бесконечность становления может иметься здесь в виду? Если мы будем без разбора, как попало, нагромождать одно становление за другим, то, во–первых, мы получим не что иное, как опять–таки арифметико–алгебраические числа, с тою только разницей, что их теперь будет бесконечное количество. А во–вторых, трансцедентного числа не получится еще и потому, что оно, как и всякое число, должно быть чем–то простым, а не распадаться на то или иное количество взаимно диспаратных операций. Эти операции могут им предполагаться, но тогда оно должно содержать имманентно своей структуре некий единообразный и простой закон этих операций. Напр., дробь

предполагает не просто какое–то одно число, но это число усложнено привнесением определенной арифметической операции. Однако самая структура этой дроби содержит в себе вполне определенный закон этой операции. Трансцедентное число, предполагающее бесконечное количество тех или иных операций, должно самой своей структурой давать закон, по которому эти операции можно было бы развернуть. Совершенно не важно, что мы фактически не в состоянии произвести все эти операции. Имея закон развертывания этих операций, мы и не нуждаемся в производстве всех этих операций целиком. Мы можем остановиться где угодно; и если бы нам и было возможно произвести все эти бесконечные операции целиком, то мы из этого ровно ничего нового не получили бы. Такова важность обладания законом развертывания становления.

Этим законом развертывания становления для трансцедентного числа является понятие предела. Становление по сути своей, по характеру своего развертывания беспредельно. Но это не мешает ему иметь тот или иной предел, который характеризовал бы тот или иной метод данного становления. Беспредельность становления требует только, чтобы оно, если его рассматривать как таковое, нигде не останавливалось и чтобы тем самым не перестало быть самим собою и нё перешло в ставшее. Но это значит только то, что предел становления не может наличествовать в нем самом. Если этот предел наличествует вне самого процесса становления и, следовательно, предопределяет не его абсолютные границы (остановку становления), а только лишь характер и метод его развертывания, то такому пределу становление нисколько не противоречит и даже, наоборот, от него–то и получает определенность своей структуры.

Итак, трансцедентное число должно быть пределом всех своих многомерно–инобытийных становлений или даже пределом объединения некоего алгебраического числа со всем его многомерно–инобытийным становлением.

2. Необходимо отметить, что только после введения этого последнего момента мы имеем право говорить об энергийно–эманативной выраженности трансцедентного числа. Когда шла речь о потенциальности алгебраического числа, то все дело упрощалось тем, что не нужно было реально производить никаких действий над этим числом или, точнее (поскольку в реальном производстве этих действий не нуждается также и трансцедентное число), не нужно было фиксировать реальный характер этих действий, а достаточно было указать только их общую арифметико–алгебраическую природу. Это и привело нас к тому, что мы просто постулировали одномерно–инобытийную соотнесенность как потенцию. В случае же трансцедентного числа мы, хотя и по–прежнему не нуждаемся в реальном производстве всех операций, все же, поскольку они реально предполагаются, должны иметь о них конкретное представление. А так как это последнее по содержанию и есть само определяемое нами число, то мы вынуждены в самом этом числе или, вернее, самим этим числом фиксировать закон, или метод, развертывания всех относящихся сюда операций. Вместе с тем и благодаря этому трансцедентное число оказывается не просто потенцией, но уже реальной мощью, развернутой энергией всех своих инобытийных судеб и даже, больше того, развернутой энергией всех своих инобытийных соотношений в сфере осуществления этих судеб. Трансцедентное число не только ушло в инобытие, оно ушло в бесконечную даль инобытия; и оно не просто как–то унеслось к своему инобытию, но определенным образом соотносится с инобытием решительно в каждый отдельный момент своего инобытийного существования; и оно не просто соотносится там и здесь в отдельные бесконечные моменты, но сразу отпечатлело на себе раз навсегда, однажды на всю вечность, все эти свои соотнесенности в сфере бесконечных скитаний, всю стихию непрерывно менявшейся самоориентации в беспредельных глубинах инобытийного становления. Оно есть мгновенно данное предображение всех своих вершинных судеб в темной области инобытия, и оно—тот вечный предел, который объемлет в себе, и притом в одной точке, всю бездну возможных числовых самоотрицаний.

Поделиться:
Популярные книги

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень

Часовое имя

Щерба Наталья Васильевна
4. Часодеи
Детские:
детская фантастика
9.56
рейтинг книги
Часовое имя

Санек 3

Седой Василий
3. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 3

Истребитель. Ас из будущего

Корчевский Юрий Григорьевич
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Истребитель. Ас из будущего

Магия чистых душ 3

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Магия чистых душ 3

Боярышня Евдокия

Меллер Юлия Викторовна
3. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Евдокия

Умеющая искать

Русакова Татьяна
1. Избранница эльты
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Умеющая искать

Генерал Скала и сиротка

Суббота Светлана
1. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Генерал Скала и сиротка

Не лечи мне мозги, МАГ!

Ордина Ирина
Фантастика:
городское фэнтези
попаданцы
фэнтези
5.00
рейтинг книги
Не лечи мне мозги, МАГ!

Бастард Императора. Том 3

Орлов Андрей Юрьевич
3. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 3

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Метатель. Книга 2

Тарасов Ник
2. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель. Книга 2