Логические ошибки. Как они мешают правильно мыслить
Шрифт:
Таким образом, мы можем сформулировать второе правило, выполнение которого необходимо для правильности вывода в категорическом силлогизме: средний термин должен быть распределен хотя бы в одной из посылок.
В вышеприведенном примере вывод оказался истинным, несмотря на нераспределенность среднего термина. Это получилось совершенно случайно. В других случаях из истинных посылок вывод получится ложный, если средний термин в этих посылках не распределен, например:
все рыбы размножаются икрой;
лягушки
————————————————
лягушки — рыбы.
Средний термин «размножаются икрой» не распределен ни в большей, ни в меньшей посылке, так как не все размножающиеся икрой — рыбы и не все размножающиеся икрой — лягушки.
Довольно часто приходится встречаться с тем, что человека относят к определенной группе, например, к тому или иному философскому направлению, на основе сходства отдельных высказываний этого человека с высказываниями представителей данного философского направления.
Следует отметить, что нераспределенность среднего термина наблюдается не только в том случае, когда он является предикатом в обеих посылках. Средний термин может быть не распределен и тогда, когда он является субъектом одной из посылок, например:
многие металлы тонут в воде;
натрий — металл;
————————
натрий тонет в воде.
Средний термин здесь «металл». В большей посылке он не распределен как субъект частного суждения, а в меньшей — как предикат утвердительного.
Теперь мы можем разобрать и ту логическую ошибку, которой открывается наша брошюра. Из какого положения можно вывести, что треугольник со сторонами 3, 4 и 5 будет прямоугольным? Если мы будем выводить это из теоремы Пифагора, то получим такой силлогизм:
во всяком прямоугольном треугольнике квадрат одной стороны равен сумме квадратов двух других сторон;
в данном треугольнике квадрат одной стороны равен сумме квадратов двух других сторон;
—————————————————
этот треугольник прямоугольный.
Такой силлогизм неправилен. Вывод «этот треугольник прямоугольный» из данных посылок не следует, так как здесь не распределен средний термин. Обращать это суждение нельзя, так как из общеутвердительного суждения при обращении получится частноутвердительное и средний термин опять не будет распределен ни в одной из посылок:
некоторые треугольники, у которых квадрат одной стороны равен сумме квадратов двух других сторон, являются прямоугольными;
в данном треугольнике квадрат одной стороны равен сумме квадратов двух других сторон;
————————————————————
данный треугольник прямоугольный.
Средний термин был бы распределен, если бы большей посылкой было суждение «всякий треугольник, в котором сумма квадратов двух сторон равна квадрату третьей, является прямоугольным». Мы можем взять это суждение в качестве посылки для нашего силлогизма, так как существует теорема, обратная теореме Пифагора, и она выражается именно в виде этого суждения. Итак:
всякий треугольник, в котором
в данном треугольнике квадрат стороны равен сумме квадратов двух других сторон;
—————————————————
этот треугольник прямоугольный.
Средний термин здесь распределен в большей посылке, как субъект общеутвердительного суждения. Заключение «этот треугольник прямоугольный» в данном случае будет вытекать из посылок. Но выводить его непосредственно из теоремы Пифагора, как это сделал поступающий в вуз, нельзя — в этом случае не соблюдается правило распределенности терминов, вследствие чего умозаключение становится логически ошибочным. Теперь рассмотрим такой силлогизм:
все рыбы дышат жабрами;
кит — не рыба;
———————
кит не дышит жабрами.
Правилен ли вывод в этом силлогизме? С точки зрения известных нам двух правил здесь как будто все в порядке: в силлогизме три термина, средний термин «рыба» в большей посылке распределен; и посылки и заключение — суждения истинные. И тем не менее этот вывод содержит логическую ошибку. В этом нетрудно убедиться, сравнив его со следующим силлогизмом:
помидоры съедобны;
огурцы — не помидоры;
————————————
следовательно, огурцы не съедобны.
Обе посылки здесь истинны, но вывод явно ложен; следовательно, силлогизм неправилен.
При разборе обращений подчеркивалось, что если термин не распределен в посылке, то он не должен быть распределен и в заключении. Это требование распространяется и на силлогизмы. Это вполне понятно, так как и там и здесь оно естественно вытекает из необходимости соблюдать закон тождества. Нельзя в рассуждении дедуктивного типа говорить в заключении о большем круге предметов, чем тот, который нам дан в посылках. Субъекты заключения наших силлогизмов «кит» и «огурцы» распределены и в посылках и в заключении. Но большие термины — предикаты «дышащие жабрами» и «съедобные» в большей посылке не распределены, так как понятие «рыбы» охватывает лишь часть объема понятия «дышащие жабрами», так же как «помидоры» — лишь часть «съедобных». В заключении же больший термин отрицается, следовательно, он распределен. Таким образом, оказывается нарушенным сформулированное нами правило силлогизма, касающееся распределенности терминов заключения. Оно будет третьим правилом силлогизма.
В посылках силлогизмов, которые мы разобрали, был не распределен больший термин как предикат утвердительного суждения. Но он может быть не распределен и как субъект частного суждения. Если при этом он окажется распределенным в заключении, тогда здесь будет такая же логическая ошибка, как в только что разобранных силлогизмах, например:
многие планеты имеют атмосферу;
Церера не имеет атмосферы;
———————————————
Церера — не планета.
Могут быть и другие случаи в силлогизме: