Логические ошибки. Как они мешают правильно мыслить
Шрифт:
Однако необходимо отличать неумение быстро найти и точно квалифицировать логическую ошибку в рассуждении от неумения определить, что в рассуждении есть какая-то, хотя и неизвестно какая, ошибка. В первом случае человек не сможет как следует понять сам и объяснить другим, почему та или иная мысль неправильна, почему нельзя доверять данному выводу. Во втором он вообще не будет видеть разницы между правильными и неправильными мыслями, будет доверять самым абсурдным выводам.
Если человек не имеет логических знаний, позволяющих ему быстро и четко определять сущность любой логической ошибки, если он не может показать, в какой мере и почему данное утверждение заслуживает или не заслуживает доверия, то было бы хорошо, если бы
Для этой цели применяются некоторые приемы, с помощью которых, не зная твердо всех логических правил, можно установить наличие ошибки в том или ином рассуждении. Правда, эти приемы распространяются не на все рассуждения и не дают возможности квалифицировать ошибку, но они во многих случаях помогают избежать ошибки самому и заметить ее у других. В отдельных случаях с их помощью можно даже доказать, что данный вывод является неправильным.
Такие приемы мы неоднократно применяли в этой брошюре, когда хотели показать неправильность того или иного рассуждения. Они часто применяются и в повседневной жизни.
Применять их можно и даже необходимо, но нужно знать, в каких рамках это можно делать, к каким случаям применим и что дает каждый из этих приемов.
Самым универсальным и гибким из этих приемов является аналогия, которую можно применять к самым разнообразным случаям. Пусть мы имеем рассуждение: «Все планеты вращаются вокруг Солнца, следовательно, все тела, вращающиеся вокруг Солнца, — планеты». Как проверить правильность этого вывода, не зная правил обращения? Берем другое рассуждение, аналогичное первому по своей структуре, но имеющее вывод, истинность или ложность которого очевидна, например, «все воробьи — птицы, следовательно, все птицы — воробьи». Рассуждение это явно неправильно, следовательно, неправильно и аналогичное ему первое рассуждение.
Допустим, нам нужно проверить, правильно ли определение «школа — здание, в котором учатся школьники». Подбираем аналогичное определение, например, «Москва — город, в котором живут москвичи». Ошибочность определения во втором случае более очевидна, хотя оба они одного типа. Поэтому определение в том и другом случае дано неправильно. Пусть нам дан условно-категорический силлогизм:
если у человека повышенная температура, то он болен;
у него нет повышенной температуры;
————————————————————
следовательно, он здоров.
Верно ли это? Возьмем другое рассуждение, имеющее аналогичное строение;
если купленный в магазине продукт — колбаса, то этот продукт можно есть;
продукт, купленный в магазине, — не колбаса;
—————————————————————————
следовательно, его нельзя есть.
(Ясно, что колбаса — не единственный продукт, который можно есть). Поэтому оба рассуждения неправильны.
Выше таким же образом обосновывалась неправильность силлогизма:
все рыбы дышат жабрами;
кит — не рыба;
————————————
кит не дышит жабрами.
Другой силлогизм точно такого же строения дает явно абсурдный вывод, что доказывает неправильность всех силлогизмов такого типа:
помидоры съедобны;
огурцы — не помидоры;
————————————
огурцы не съедобны.
Частным случаем применения аналогии является использование графических схем для проверки правильности или неправильности тех или иных умозаключений. Здесь проводится аналогия между логическими и геометрическими отношениями. В самом деле, геометрическая фигура — круг, которым мы изображаем объем понятия, имеет совсем другую природу, чем это понятие. Например, понятие «тигр» имеет очень мало общего с кругом, так же как и понятие «животное». Но отношение
С помощью графических схем можно наглядно показать соотношение понятий, входящих в рассуждение, и проверить, вытекает ли данный вывод при таком соотношении. Например, несостоятельность умозаключения
«все планеты вращаются вокруг Солнца;
Земля вращается вокруг Солнца;
—————————————————
Земля — планета»,
которая была выше выяснена другими способами, может быть показана и этим приемом. В первой посылке понятие «планеты» включается в понятие «тела, вращающиеся вокруг Солнца». Графически это можно изобразить так (рис. 13). Во второй посылке понятие «Земля» включается в понятие «то, что вращается вокруг Солнца». Изобразим понятие «Земля» точкой 3. Куда попадет эта точка? Конечно, она войдет в большой круг (рис. 14) на основании меньшей посылки. Но обязательно ли она попадет при этом в маленький круг — «планеты»? (рис. 15). У нас нет достаточного основания утверждать это. В посылках говорится только о том, что Земля должна войти в круг «тела, вращающиеся вокруг Солнца». Следовательно, делать отсюда категорический вывод «Земля — планета» будет неправильным. Земля — действительно планета, но из данных посылок это не вытекает.
Так же наглядно можно показать неправильность такого силлогизма (рис. 16):
все рыбы дышат жабрами;
киты — не рыбы;
————————————
киты не дышат жабрами.
В меньшей посылке говорится, что киты — не рыбы, значит, круги, изображающие тех и других, должны полностью исключать друг друга. При этом допускаются следующие возможности:
1) киты включаются в число дышащих жабрами;
2) киты полностью исключаются из числа дышащих жабрами;
3) часть китов дышит жабрами, часть — не дышит жабрами.
Можем ли мы выбрать только одну из этих трех возможностей для вывода о китах? Ясно, что нет. Никаких оснований у нас для этого нет.
Возьмем такое рассуждение:
«Бородин мог стать либо писателем, либо ученым, либо композитором. Он стал композитором. Следовательно, Бородин не был ни писателем, ни ученым».
Опыт показывает, что многие из тех, которые делают такой неправильный вывод, могут вместе с тем без особого труда справиться с задачей правильного — графического изображения отношений по объему понятий «писатели», «композиторы» и «ученые» (рис. 17).
А получив такую схему, уже совсем легко понять, что Бородин (B) в принципе мог быть одновременно и тем, и другим, и третьим (S). Кстати, он был ученым-химиком. В тех случаях, когда члены деления исключают друг друга, избежать ошибки значительно легче. Если этот человек может быть или пионером, или комсомольцем и известно, что он пионер, то ясно, что он не комсомолец (рис. 18).