Логика и аргументация: Учебное пособие для вузов.
Шрифт:
Г.В. Лейбниц считал, что применение дедукции не должно ограничиваться рамками математики, а обязано охватить несравненно более широкую область знания и практического действия. В этих целях он намеревался построить универсальный символический язык или формальное исчисление, с помощью которого можно было бы свести любое содержательное рассуждение к вычислению. В таком случае, писал он, двум ученым не придется больше бесконечно спорить. Вместо этого они возьмут перья в руки, сядут за счетные доски и скажут друг другу: "будем вычислять". Такая программа, как показали современные исследования, даже при новейших быстродействующих компьютерах не может быть реализована. Несмотря на это, идея о формализации дедуктивных
С другой стороны, притязания индуктивной логики на роль логики открытия постепенно также выявили свою несостоятельность. С переходом науки от накопления к их теоретическому анализу, обобщению и систематизации эмпирических фактов становилось все более очевидным, что с помощью индуктивных методов можно открывать лишь простые эмпирические законы. Д.С. Милль, исправивший и систематизировавший индуктивные правила Бэкона, полагал, что с их помощью можно исследовать любые причинные зависимости между явлениями природы. В действительности же эти правила могут помочь обнаружить лишь самые простые причинные отношения. Открытие же подлинных причинных законов требует раскрытия глубоких внутренних механизмов, управляющих явлениями, а это неизбежно связано с переходом от эмпирического к теоретическому уровню познания, с использованием абстрактных понятий, выдвижением догадок и гипотез и последующей проверкой следствий из них на опыте. Поэтому в опытных науках все большую роль приобретает гипотетико- дедуктивный метод исследования.
Начало применения этого метода в науке связывают с именем Г. Галилея, который использовал его в своих исследованиях законов свободного падения тел. Отказавшись от умозрительных принципов аристотелевской физики, Галилей стал проверять свои гипотезы путем вывода из них следствий, которые можно было сопоставить с результатами экспериментов. В этих целях он начал проводить тщательные измерения и обрабатывать полученные данные математически. Так, по сути дела, возник экспериментальный метод в точном естествознании, подлинным триумфом которого стало открытие Ньютоном законов механики и всемирного тяготения.
Нетрудно заметить, что в гипотетико-дедуктивном методе органически сочетаются индуктивные и дедуктивные приемы исследования. Первые используются на первоначальной, эмпирической стадии познания, когда приходится анализировать факты, делать обобщения и т.п. Но для выдвижения гипотезы этого далеко не достаточно, так как при этом используются все другие интеллектуальные способности и средства: в первую очередь интуиция, воображение, аналогии и т.д., которые трудно поддаются логическому анализу. Дедукция же начинает применяться тогда, когда гипотеза будет сформулирована. Из нее затем по правилам дедуктивных умозаключений выводят следствия, которые сопоставляют с эмпирическими утверждениями (фактами, данными, свидетельствами и т.п.). Подтверждение или опровержение следствий данными опыта служит критерием для принятия или отказа от гипотезы.
Почти одновременно с утверждением гипотетико-дедуктивного метода в опытных науках в середине прошлого века начался новый этап в развитии дедуктивной логики. Он был связан с применением символических средств и математических методов для анализа дедуктивных выводов. Первые работы в данном направлении относились к использованию понятий и методов алгебры для анализа силлогизмов. Поэтому само это направление получило название алгебры логики (О. де Морган, Дж. Буль, У.С.
Дальнейшее развитие математической логики было связано с переходом от изучения общелогических проблем к анализу математических рассуждений и доказательств. Первый крупный шаг был сделан выдающимся немецким логиком Г. Фреге, который с помощью созданного им формализованного языка показал, как можно осуществить тщательный анализ логической структуры рассуждения во всех его деталях. Другая, не менее важная цель Фреге состояла в том, чтобы свести формализованную им арифметику к символической логике. Но обнаружение Б. Расселом противоречия в системе Г. Фреге заставило его отказаться от завершения своей работы.
Противоречия и парадоксы, обнаруженные в фундаменте здания математики - канторовской теории множеств, значительно усилили интерес к математической логике. Многие надеялись с ее помощью избавиться от парадоксов. Возникновение нового раздела этой логики - теории алгоритмов, на которую опирается в свою очередь теория математического программирования для вычислительных машин, открыли новые перспективы для математизации и компьютеризации научного знания и различных видов практической деятельности.
В последние десятилетия значительное внимание стало уделяться также логике неформальных рассуждений, которые служат основой для учения об аргументации. В отличие от доказательства, аргументация опирается на диалог, в ходе которого собеседники ведут поиск истины. Такой возврат к традиции, ведущей свое начало от Сократа и Платона, оказывается весьма плодотворным в разнообразных видах гуманитарной деятельности, где приходится вести спор, полемику, дискуссию. В этих условиях простое формальное доказывание отступает на второй план перед умением приводить аргументы (или доводы) в защиту своей позиции, обосновывать их правдоподобность, оценивать их вес, находить контрдоводы и возражения утверждениям оппонента и т.п. Все это требует разработки теории правдоподобных рассуждений, а в более широкой перспективе - принципов применения логики к научному знанию и практической деятельности.
1.3. Логика и другие науки
Принципы и правила логики имеют универсальный характер, поскольку в любой науке постоянно делаются выводы, определяются и уточняются понятия, формулируются утверждения, обобщаются факты, проверяются гипотезы и т.д. С этой точки зрения каждую науку можно рассматривать как прикладную логику. Но особо тесные связи существуют между логикой и теми науками, которые заняты изучением мыслительной деятельности человека как в индивидуальном, так и социальном плане.
Четкое разграничение сфер исследования наук о духовной деятельности имеет непосредственное отношение к определению предмета и методов исследования логики. Можно выделить три основных направления, по которым происходило воздействие разных подходов на содержание и характер методов логики.
1. Сторонники психологизма стремились истолковывать принципы и законы логики как непосредственное выражение устойчивых связей между мыслями, которые возникают у субъекта в процессе рассуждения. Ассоциация и диссоциация мыслей, их интеграция и дезинтеграция служат, по мнению психологистов, основой для формирования суждений и умозаключений. Таким образом, принципы и законы логики оказываются законами субъективной психической деятельности, а сама логика превращается в часть психологии. Но в таком случае логические законы лишаются объективного содержания и становится неясным, на какие общезначимые критерии опираются люди, когда они стремятся в чем-то убедить друг друга, вскрывают логические ошибки в рассуждениях, достигают взаимопонимания и согласия. На эти и подобные вопросы психологисты не дают обоснованных ответов.