Логика и аргументация: Учебное пособие для вузов.
Шрифт:
Более точная формулировка закона обратного отношения между содержанием и объемом понятия может быть дана в таком виде: если объем одного понятия составляет часть другого, имеющего тот же род, то содержание второго составляет часть содержания первого понятия, и наоборот, когда содержание одного понятия есть часть содержания другого, тогда объемы понятий находятся в обратном отношении.
Несмотря на свою очевидность, этот закон не раз оспаривался в истории философии и методологии науки. Еще совсем недавно он подвергался критике сторонниками диалектической логики.
Какие доводы выдвигаются против закона обратного отношения между содержанием и объемом понятия?
Поскольку прогресс науки приводит к образованию новых, более общих и глубоких теорий, постольку эти понятия и теории не могут рассматриваться как более бедные по
Определив объем понятия, можно рассмотреть, какие отношения могут существовать между различными их типами.
Отношение эквивалентности существует тогда и только тогда, когда объемы сравниваемых понятий полностью совпадают. Это означает, что отличительные или существенные признаки, присущие сравниваемым понятиям, принадлежат всем элементам множеств, составляющих их объемы. Так, понятие эквивалентности характеризует отношение между классами равносторонних и равноугольных треугольников, равноугольных ромбов и квадратов, равносторонних прямоугольников и квадратов. Легко убедиться, что, несмотря на отличительные признаки этих понятий, все они принадлежат к одному классу элементов, т.е. имеют тот же самый объем. Обратите внимание на то, что все перечисленные понятия оказываются эквивалентными только по объему, содержание же их различно. Так, признаки "иметь равные стороны" или "обладать равными углами" отличаются друг от друга по смыслу.
Отношение перекрещивания (частичного совпадения) объемов понятий существует тогда и только тогда, когда часть объема одного понятия входит в объем другого, и в свою очередь часть объема второго понятия входит в объем первого. Таковы отношения между объемами понятий "студенты" и "спортсмены", "студенты" и "филателисты", ибо ясно, что не все студенты являются спортсменами или филателистами. Обычно для наглядного изображения отношений между объемами понятий употребляются диаграммы Л. Эйлера, в которых объем понятия представляется кругом. Поскольку у эквивалентных понятий объемы совпадают, то отношение между ними изображается одним кругом. В случае частичного совпадения объемов отношение изображается пересечением двух кругов. Если обозначить объем одного понятия через А, другого - через В, то графически отношения эквивалентности (рис. 1) и
Отношение субординации (подчинение объемов) понятий существует тогда и только тогда, когда объем одного понятия полностью входит в объем второго. Понятие меньшего объема составляет часть, или, точнее, вид понятия с большим объемом, который по отношению к нему называют родом. На диаграмме Эйлера (рис. 3) это отношение изображается включением меньшего круга в больший.
Все перечисленные выше отношения имеют место между совместными понятиями, объемы которых либо совпадают, либо перекрещиваются, либо составляют часть другого.
Несравнимые («неположенные)
Особый интерес представляют понятия, объемы которых находятся в отношении контрарности (противности) друг другу, как, например, "белый" и "черный", "холодный", и "горячий", "длинный" и "короткий" и т.д., которые представляют собой свойства, расположенные на границе соответствующих множеств свойств. Между "белым" и "черным", "холодным" и "горячим" и т.д. располагаются промежуточные свойства. В силу этого объемы контрарных понятий занимают крайние положения на круговых диаграммах (рис. 4).
Отношение контрадикторности (противоречивости) между объемами понятий существует тогда, когда они, с одной стороны, отрицают друг друга, а с другой исчерпывают объем целого понятия (рис. 5).
В языке противоречие выражается отрицательной частицей перед словом, выражающим свойство. Примерами могут служить свойства, выражающие такие понятия, как белый и не белый, холодный и не холодный, черный и не черный и т.п. На диаграмме (см. рис. 5) объемы таких понятий составляют две половины круга, хотя гораздо лучше представить объем положительного понятия кругом, а отрицательного - прямоугольником, в который входит этот круг, поскольку противоположное (отрицательное) понятие содержит обычно большее число элементов (рис.6).
Поскольку объемы понятий образуют классы (или множества) предметов, элементы которых обладают признаками, сформулированными в их содержании, то над этими классами (или множествами) можно производить определенные логические операции. Они тождественны операциям, которые изучаются в теории множеств.
Объединением классов (или множеств) называют класс, который содержит в своем составе все элементы, входящие в каждый отдельный класс. Если обозначить отдельные классы через A1, А2, А3,..., Аn, то объединенное множество можно представить как дизъюнкцию (или логическое сложение) всех перечисленных классов (или множеств):
UAi = A1U A2U А3 ... UAn.
Например, объединение плоских фигур будет состоять из класса треугольников, класса четырехугольников, окружностей и других фигур, класс деревьев - из классов хвойных, лиственных и других деревьев.
Пересечением (или умножением) классов называется новый класс, который содержит в своем составе те и только те элементы, которые входят в каждый из отдельных классов. Иначе говоря, он содержит элементы, общие всем отдельным классам. Поэтому сама операция пересечения классов иногда называется взятием их общей части. Обозначив отдельные классы через A1, А2, А3,..., Аn, их пересечение можно представить в виде: Ai = A1, А3,..., Аn, где знак обозначает операцию пересечения, умножения или конъюнкции классов.
Под обобщением понятий подразумевается операция перехода от понятий меньшего объема к понятиям большего объема, а под ограничением - обратный процесс перехода от понятий большего объема к понятиям меньшего объема. Однако в отличие от предыдущего случая отношений понятий с фиксированными объемами, при обобщении и ограничении понятий происходит также изменение содержания понятий, поскольку при обобщении некоторые признаки исключаются, а при ограничении, наоборот, прибавляются. Это непосредственно следует из закона обратного отношения между объемом и содержанием понятия.