Логика случая. О природе и происхождении биологической эволюции
Шрифт:
Пожалуй, самый поразительный вывод относится к стволовой фазе эволюции, предшествовавшей LECA и геномной архитектуре ранних предков эукариот, живших до LECA. Оценка, основанная на предположении о «мгновенном» вторжении интронов группы II из эндосимбионта в геном хозяина (см. гл. 7), указывает на столь узкое «бутылочное горлышко» (Ne 1000, если не меньше), что выживание было бы мало вероятно по чисто стохастическим причинам (Koonin, 2009b). Таким образом, мы вынуждены постулировать до некоторой степени постепенное проникновение интронов в геном хозяина. Тем не менее даже этот сценарий менее разрушительного вторжения предполагает очень длинные и тонкие «бутылочные горлышки» на пути от исходного хозяина эндосимбионта до LECA (см. рис. 8–3). Такое узкое место, вероятно, будет единственным возможным переходом к появлению эукариотической организации клетки, учитывая многочисленные дупликации и другие новшества, необходимые для эукариогенеза.
Все эти выводы недвусмысленно свидетельствуют в пользу неадаптивной популяционно-генетической теории эволюции генома, что, в сочетании с результатами сравнительной геномики, по-видимому, открывает нам окно в эволюционное прошлое, которое иначе
От мусора к функциональности: важность ослабленного очищающего отбора для эволюции сложности
Что было движущим фактором (или факторами) эволюции геномной (и возможно, связанной с ней организменной) сложности? Неадаптивная популяционно-генетическая теория (Lynch, 2007c; Lynch and Conery, 2003) подсказывает удивительный ответ: необходимым и, вероятно, достаточным условием для возникновения сложности был неэффективный очищающий отбор в популяциях с небольшим Ne [74] . Неэффективный отбор способствовал фиксации слегка вредных признаков, которые были бы отбракованы в большой популяции, и накоплению мусора, часть которого затем была задействована в разнообразных функциях.
74
Макши и Брэндон в своей недавней книге формулируют «закон эволюции в условиях нулевой силы» (по аналогии с первым законом Ньютона), согласно которому эволюция популяции или экосистемы в отсутствие ограничивающего давления отбора ведет к увеличению сложности по чисто стохастическим причинам (Daniel W. McShea and Robert N. Brandon (2010). Biology’s First Law: The tendency for Diversity and Complexity to Increase in Evolutionary Systems. University of Chicago Pres: Chicago). По крайней мере формально сформулированное нами условие возникновения сложности согласуется с этим законом: сложность возникает только в условиях слабого, пусть и не нулевого, давления отбора.
Рис. 8–3. Реконструкция популяционной динамики на протяжении эукариогенеза: эукариогенез делается возможным благодаря крайне узкому «бутылочному горлышку». Ng – эффективное число генов/локусов, n – число нуклеотидов, необходимых для сплайсинга (вначале автокаталитического) интрона (около 25 на интрон), размер мишени для вредных мутаций, u – частота мутаций на нуклеотид на поколение (0,5x10– 9); A = архея, предполагаемый хозяин протомитохондриального эндосимбионта (ПМС); N = ядро; FECA = первый общий предок эукариот, химерная клетка, образовавшаяся немедленно после эндосимбиоза.
Перепишем условие фиксации из предыдущего раздела следующим образом:
Это простое неравенство задает ограничение на размер мишени вредных мутаций, остающейся невидимой для очищающего отбора, или, другими словами, максимальное число необходимых для функционирования нового геномного элемента нуклеотидов, при котором он имеет шанс зафиксироваться.
Оценки, использующие значения Neu из табл. 8–1, выявляют принципиальные различия между организмами. Так, у позвоночных очищающий отбор «пропускает» до 250 нуклеотидов, в то время как у прокариот фиксация последовательностей длиннее, чем приблизительно 10 нуклеотидов, является маловероятной.
Эти теоретические соображения означают, что существенное увеличение геномной сложности возможно только в режиме ослабленного очищающего отбора. Рассмотрим три основные составляющие геномной сложности у позвоночных, также отвечающие за сложность молекулярного фенома и, насколько мы знаем, дифференциацию тканей и другие аспекты организменной сложности:
1. Альтернативный сплайсинг, который производит большую часть белкового разнообразия в данных организмах [75] .
75
Вероятно, не менее важна альтернативная транскрипция, которая также приводит к формированию разных белковых продуктов одного и того же гена.
2. Комбинаторная регуляция транскрипции, при которой гены оснащены наборами сайтов связывания транскрипционных факторов. Различные комбинации факторов транскрипции связываются с этими сайтами, обеспечивая сложную регуляцию экспрессии (Venters and Pugh, 2009).
3. Гигантский некодирующий РНом, включающий в себя относительно хорошо изученные микроРНК, ряд других частично охарактеризованных малых РНК, более таинственные длинные некодирующие РНК [76] и огромное количество «темной материи» РНК (Amaral et al., 2008).
76
Мы с коллегами недавно построили вероятностную модель, которая позволила экстраполировать имеющиеся данные и рассчитать, что геномы млекопитающих, скорее всего, кодируют примерно вдвое больше длинных некодирующих РНК, чем белков (Managadze D, Lobkovsky AE, Wolf YI, Shabalina SA, Rogozin IB, Koonin EV. The Vast, Conserved Mammalian lincRNome. PLoS Comput Biol. 2013 Feb;9(2):e1002917).
Рассмотрев эти замечательные явления более подробно, в каждом из них мы можем безошибочно различить следы неадаптивной эволюции, связанной с ослабленным очищающим
Как отмечалось в предыдущем разделе, богатые интронами геномы имеют «слабые» сигналы сплайсинга, скорее всего просто потому, что сила очищающего отбора в соответствующих популяциях недостаточна, чтобы жестко контролировать эти нуклеотидные последовательности. Иными словами, аномальные транскрипты, образующиеся с определенной частотой из-за ошибок сплайсинга в богатых интронами организмах, не являются достаточно вредными для того, чтобы быть устраненными очищающим отбором в условиях низкой Ne. Таким образом, неточность в вырезании интронов предоставляет нишу для альтернативного сплайсинга. Иными словами, неточный сплайсинг – это и есть альтернативный сплайсинг. Поскольку эволюционирующие небольшие популяции не могли избавиться от него, они «научились» использовать некоторые из альтернативных (первоначально аномальных) транскриптов в различных функциональных ролях. Эти роли часто основаны на том, что альтернативные белки являются модификациями «нормальных» белков и, соответственно, действуют как функциональные варианты исходного белка или же как доминантные отрицательные регуляторы. В соответствии с логикой эволюции, альтернативный сплайсинг аналогичен горизонтальному переносу генов у прокариот в том, что оба являются выгодными альтернативами дупликации генов, при которых модификация активности достигается за один шаг, а не за длительный период эволюции. С учетом реконструкции, приведенной на рис. 7–8, можно предположить, что у LECA ошибки сплайсинга происходили с высокой частотой, давая, соответственно, большое разнообразие транскриптов, но при этом функциональный альтернативный сплайсинг был весьма редок (если вообще происходил). Дальнейшая эволюция различных ветвей эукариот, по-видимому, происходила в соответствии с двумя противоположными сценариями: потеря большинства интронов и усиление сигналов сплайсинга на границах оставшихся интронов, снижающие продукцию аномальных транскриптов до незначительного уровня; сохранение частоты ошибок сплайсинга примерно на том же уровне, что и у LECA (при условии примерно такой же плотности интронов), сопровождаемое эволюцией функционального альтернативного сплайсинга, то есть задействование многих, но, конечно, не всех и, вероятно, даже не большинства аномальных транскриптов для продукции альтернативных функциональных форм белка.
Большинство линий одноклеточных эукариот, эволюционировавших в сторону больших Ne и эффективного очищающего отбора, пошли по первому пути; второй сценарий относится к животным и растениям, которые никогда не достигали больших эффективных размеров популяции и вынуждены были справляться с унаследованным неточным сплайсингом. Третьего пути, по-видимому, не существовало: либо разработать способ устранения аномальных транскриптов, либо использовать их, либо вымереть.
Сайты связывания факторов транскрипции у эукариот состоят из 8—10 нуклеотидов, так что стоимость добавления одного сайта составляет s 10u, или примерно 10–7, если взять характерное для позвоночных значение u (Lynch, 2007c). Таким образом, геномы сложных многоклеточных эукариот, по-видимому, могли практически «бесплатно» накапливать сайты связывания транскрипционных факторов, что позволило появиться сложным кассетам сайтов. У одноклеточных эукариот возможности для эволюции в этом направлении были ограничены; для прокариот этот путь к инновациям, судя по всему, был закрыт очищающим отбором.
Некодирующий РНом позвоночных – возможно, главнейшее проявление сложности генома. Белок-кодирующие экзоны составляют около 1,5 процента генома млекопитающих, в то время как экзоны, соответствующие некодирующим РНК, по различным оценкам, занимают более 4 процентов генома – около 80 процентов кодирующего потенциала генома используется для молекул РНК, не транслирующихся в белки (Eddy, 2002). Это коренным образом отличается от кодирующих репертуаров прокариот и даже одноклеточных эукариот, в которых некодирующие РНК составляют лишь небольшую часть. Что еще более поразительно, ряд недавних исследований показывает, что большая часть – вероятно, более 60 процентов – генома млекопитающих транскрибируется на заметном уровне (Lindberg and Lundeberg, 2010; Mendes Soares and Valcarcel, 2006). Природа этой «темной материи» далеко не ясна. Иногда считается, что экспрессия подразумевает функциональный смысл транскрибируемой области генома. Однако, учитывая отсутствие какой-либо заметной эволюционной консервации большинства из этих транскрибируемых последовательностей и относительной легкости возникновения ложных (слабых) сайтов инициации транскрипции в случайных последовательностях ДНК, можно сказать, что почти наверняка большая часть темной материи – это транскрипционный шум. Тем не менее эта случайно транскрибируемая часть генома и «мусорная» ДНК в целом представляют собой огромный резервуар для генерации новых микроРНК и других некодирующих, но выполняющих структурные и регуляторные функции РНК, многие из которых плохо сохраняются в процессе эволюции и эволюционируют высокими темпами. Открытие обширного РНома животных показывает, что сложные геномы многоклеточных организмов и простые геномы одноклеточных форм жизни качественно различаются. Это различие интерпретируется самым естественным образом в рамках неадаптивной популяционно-генетической теории эволюции генома. Согласно этой теории, эволюция форм жизни с низким Ne и последующим слабым очищающим отбором приводит к накоплению большого количества интронной и межгенной мусорной ДНК, некоторые сегменты которой время от времени задействуются для различных функций. Масштаб преобразования ландшафта экспрессии генома, вызванного, видимо, в первую очередь простыми факторами популяционной генетики, поражает воображение и представляется соразмерным с интуитивно очевидной разницей в сложности (и, очевиднее всего, в размере) между млекопитающим и простейшим. Вспомним обсуждение эволюции последовательностей в главах 3 и 4: широкий набор нефункциональных транскриптов составляет почти нейтральное пространство, открытое для эволюции сложности в многоклеточных организмах. Такое почти нейтральное пространство неизбежно возникает в ходе эволюции организмов с низкой Ne по чисто энтропийным причинам.