Чтение онлайн

на главную - закладки

Жанры

Логика случая. О природе и происхождении биологической эволюции
Шрифт:

Хотя масштаб задействования мусора довольно мал по сравнению с общим количеством некодирующей ДНК, он огромен по отношению к суммарному размеру белок-кодирующих последовательностей. Учитывая популяционное «бутылочное горлышко», через которое, скорее всего, проходил эукариогенез (см. рис. 8–3), вполне вероятно, что значительное количество мусорной ДНК эволюционировало на очень раннем этапе истории эукариот и, возможно, уже присутствовало у LECA – как и интенсивная случайная транскрипция. Можно представить себе, что на следующем этапе эволюции произошло «нарушение симметрии», которое привело к бифуркации, описанной при обсуждении истории интронов: линии с большим Ne установили строгий контроль за геномом, устранив большинство мусорной ДНК. В противоположность им, линии, не достигшие больших Ne, занялись «компенсацией» в виде постепенного приспосабливания возрастающего количества частей (бывшего) мусора под функциональную РНК (см. рис. 8–4).

Продолжая в том же духе, неадаптивная теория предлагает простое объяснение для перехода от простого типа регуляции транскрипции по Жакобу – Моно к сложной стратегии регуляции, используемой эукариотами. Вместо того чтобы использовать лишь один сайт связывания для единственного регулятора оперона (или, в редких случаях,

несколько сайтов), как у прокариот, транскрипция большинства эукариотических генов регулируется в так называемом комбинаторном режиме, при котором несколько факторов транскрипции взаимодействуют сразу с несколькими, а зачастую и с большим числом сайтов, расположенных перед геном (Ravasi et al., 2010). У прокариот сайты связывания фактора транскрипции содержат достаточно информации для точного распознавания уникального сайта (или нескольких сайтов) в относительно небольшой геномной последовательности. Напротив, у эукариот сайт обычно содержит слишком мало информации для обеспечения точного распознавания (другими словами, геном содержит много сайтов с равным или даже большим сродством к данному транскрипционному фактору; Wunderlich and Mimy, 2009). Эта неадекватность одиночных сайтов связывания у эукариот обусловлена слабостью очищающего отбора, неспособного поддерживать множество точно сохраненных сайтов в геноме (см. обсуждение эволюции интронов ранее в этой главе), а также не может предохранить геном от роста, что увеличивает пространство поиска для транскрипционных факторов. Таким образом, комбинаторная модель может быть единственным решением для проблемы эффективной регуляции. Эволюции такого режима регуляции способствует рост генома, в частности достаточно высокая частота коротких тандемных дупликаций. Эволюция сложной регуляции экспрессии генов, являющейся отличительной чертой эукариот и необходимым условием для эволюции сложных многоклеточных форм, по-видимому, является наиболее ярким примером превращения мусора в функциональные элементы в ходе эволюции при слабом очищающем отборе. Как и в случае других аспектов эволюции сложности, отбор направлен здесь на предотвращение энтропийного коллапса, а не на непосредственное «улучшение» регуляции.

Рис. 8–4. Пути эволюции генома: оптимизация и задействование «мусора».

Эволюция продвинутых адаптаций в малых популяциях со слабым отбором может показаться парадоксальной, и, возможно, не зря: возникновение таких сложных функций, похоже, требует эффективного положительного отбора, что возможно только в популяциях с большим Ne. Это, безусловно, трудный вопрос. Ответ на него, по-видимому, требует противоречащего интуиции мышления в духе «слабого антропного принципа» (см. гл. 12 и прил. II): виды, в которых сложные функции не были зафиксированы, прежде всего через случайный дрейф и конструктивную нейтральную эволюцию (см. обсуждение ниже в этой главе), просто не имели шансов выжить.

Оптимизация генома в качестве основного пути эволюции и сложность как геномный синдром

Мы интуитивно склонны считать, что эволюция происходит от простых форм к сложным. Как писал Дарвин в заключительной 14-й главе «Происхождения…», «…из такого простого начала развилось и продолжает развиваться бесконечное число самых прекрасных и самых изумительных форм» (Darwin, 1859). Конечно, эта интуиция имеет смысл (и создает тяжелую проблему), когда речь заходит о происхождении первых форм жизни (мы обратимся к этой теме в гл. 12). Тем не менее была ли постепенно увеличивающаяся сложность преобладающей тенденцией в истории большинства линий на протяжении всей эволюции жизни? И теория популяционной генетики, и сравнительные геномные реконструкции говорят об обратном [77] . В качестве наглядной иллюстрации обратимся еще раз к рис. 7–8. Появление двух ветвей многоклеточных эукариот, по-видимому, сопровождалось умеренным увеличением плотности интронов, что указывает на популяционное бутылочное горлышко, связанное с увеличением общей энтропии генома (величина H из первой части этой главы), во многих случаях весьма значительным. Увеличение энтропии создает нейтральное пространство, необходимое для последующего увеличения общей биологической сложности (высокое значение C). Напомним, что в этих случаях плотность биологической информации падает (низкое значение D): эти линии эволюционируют в «энтропийном режиме». Тем не менее даже среди растений и животных имеются большие группы, к примеру насекомые, эволюция которых включала оптимизацию генома, или уменьшение эволюционной энтропии. Этот процесс характеризуется менее стремительным падением в общей сложности и увеличением плотности биологической информации. Обращаясь к большинству ветвей в эукариотном дереве (см. рис. 7–2 и 7–8), включающих одноклеточные формы, мы видим однозначную картину оптимизации генома: энтропия генома резко падает и общая сложность также, хоть и менее резко, уменьшается, в то время как плотность информации быстро возрастает.

77

Вспомним здесь снова «закон нулевой силы», предложенный Макши и Брэндоном, согласно которому в отсутствие ограничений, накладываемых селекцией, эволюция идет именно в сторону усложнения (Daniel W. McShea and Robert N. Brandon (2010). Biology’s First Law: The tendency for Diversity and Complexity to Increase in Evolutionary Systems. University of Chicago Pres: Chicago). Справедливость этого «закона» сомнительна, учитывая закономерность, четко установленную для самых различных организмов, а именно высокую частоту делеций по сравнению со вставками в ходе эволюционного процесса (Kuo CH, Ochman H. Deletional bias across the three domains of life. Genome Biol Evol. 2009 Jun 27;1:145-52). Однако, если бы даже «закон нулевой силы» и выполнялся, приведенные здесь данные всего лишь означали бы, что в реальной эволюции ограничения перевешивают «нулевую» тенденцию.

Пока еще слишком рано говорить о том, насколько тенденция к оптимизации генома, полученная из реконструкции на рис. 7–8, главенствует в общем контексте эволюции жизни, потому что таксономическая плотность секвенированных геномов из различных ветвей жизни по-прежнему недостаточна. Тем не менее результаты имеющихся ограниченных реконструкций позволяют предположить, что изложенная картина может быть достаточно полной. Например, реконструкция общего предка существующих архей указывает на то, что геном предковой формы был, по крайней мере, столь же сложен (в пересчете на общую сложность C, потому как трудно реконструировать энтропию и, следовательно, плотность информации непосредственно), как у типичных современных членов группы (Csuros and Miklos, 2009) [78] .

Кроме того, проявляется четкая тенденция в самих результатах реконструкций: предполагаемая сложность предковых форм пересматривается в сторону повышения с увеличением числа использованных для реконструкции геномов и с уточнением применяемых моделей наибольшего правдоподобия. Качественно аналогичные результаты были получены в ходе реконструкции генного набора LECA (см. гл. 7): даже намеренно консервативные подходы, примененные к ограниченному набору геномов, указывают, что LECA был как минимум столь же сложен, как и типичный современный одноклеточный эукариот (Koonin, 2010a).

78

Аналогичная реконструкция на основе более полной информации привела к еще более впечатляющим результатам, показывая, что общий предок архей, вероятно, имел даже более сложный геном, чем большинство современных свободноживущих форм (Wolf YI, Makarova KS, Yutin N, Koonin EV. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biol Direct. 2012 Dec 14;7:46).

С учетом результатов этих реконструкций предкового генома и в рамках неадаптивной популяционно-генетической теории эволюции генома возникает искушение предложить общую модель эволюции энтропии и сложности генома. В этой модели эволюция обычно происходит прерывистым образом, через стадии высокой энтропии, связанные с популяционными «бутылочными горлышками», впоследствии развиваясь в одном из двух различных режимов (см. рис. 8–5):

1. Низкоэнтропийное (высокая плотность биологической информации) состояние, связанное с высоким Ne, по сценарию оптимизации;

2. Высокоэнтропийное (низкая плотность биологической информации) состояние, связанное с низким Ne, в соответствии со сценарием кооптации [79] .

Этот паттерн эволюции повторяется на протяжении всей истории жизни [80] . Высокоэнтропийные «бутылочные горлышки» соответствуют появлениям новых крупных групп, в то время как последующие расхождения линий внутри этих групп обычно включают в себя «нарушение симметрии» между этими двумя сценариями. Соответствие между этой моделью и моделью сжатого кладогенеза, изложенной в главе 6, очевидно. Важно отметить, что эпизоды внезапного возрастания энтропии немногочисленны и разнесены во времени друг от друга, тогда как большая часть истории жизни прошла в режиме «нормальной эволюции» между этими эпизодами. В фазе «нормальной эволюции» оптимизация генома, включающая уменьшение генома под действием сильного очищающего отбора в популяциях с большой Ne, по-видимому, встречается чаще, чем ограниченное усложнение, характерное для групп организмов, традиционно рассматриваемых как сложные, куда, безусловно, входит и наша собственная линия млекопитающих.

79

То есть задействования геномного мусора для выполнения биологических функций.

80

К моменту публикации русского перевода этой книги уже будет опубликована наша новая статья с Ю. И. Вульфом, в которой эта модель рассматривается более подробно, с использованием дополнительных данных (Wolf, Y. I., Koonin, E. V. (2013). Genome reduction as the dominant mode of evolution. BioEssays, in press).

Режим оптимизации генома легко демонстрируется in vitro в экспериментах по дарвиновской эволюции. Сол Спигелман и коллеги провели, пожалуй, самую известную серию таких экспериментов в 1960-х годах (Mills et al., 1973;. Spiegelman, 1971). Они поместили небольшое количество РНК бактериофага в пробирку с репликазой (фермент фага, ответственный за репликацию генома), нуклеотидами и необходимыми ионами и позволили ему реплицироваться в течение непродолжительного времени. Часть содержимого затем перенесли в другую пробирку, содержащую ту же смесь, и повторили процедуру. В этих условиях давление отбора на РНК фага требует лишь ускорения репликации, и результаты эволюции в этом режиме были весьма радикальны: после примерно 70 повторений размер РНК снизился с 3500 до 400 нуклеотидов, то есть до наименьшего размера, при котором молекула способна размножаться при помощи полимеразы.

Рис. 8–5. Общая модель динамики эффективного размера популяции, размера генома и плотности биологической информации в соответствии с неадаптивной теорией. Каждый из графиков показывает три пути эволюции генома: сплошная линия – оптимизация генома (свободно живущие автотрофные бактерии и археи, некоторые одноклеточные эукариоты); серая линия – задействование мусорной ДНК и усложнение генома (эукариоты, особенно их многоклеточные формы); пунктирная линия – храповик деградации генома (паразиты и симбионты, особенно внутриклеточные формы).

За пределами нулевой гипотезы: ограничения популяционно-генетического взгляда на эволюцию генома

После прочтения предыдущих разделов этой главы нельзя не усомниться в обоснованности всеобъемлющего объяснения хода эволюции каким-либо одним общим фактором. Эти опасения полностью оправданы. Нужно еще раз подчеркнуть, что наиболее сильным утверждением популяционно-генетической теории эволюции генома является то, что неадаптивная эволюция, управляемая Ne, может быть подходящей нулевой гипотезой. Несмотря на свою важность, величина Neu определяет ход эволюции только в грубом приближении и на протяженных временных интервалах. Фактические эволюционные траектории определяются – и ограничиваются – конкретным биологическим контекстом. К примеру, в проведенном моими коллегами и мной широком анализе селективных ограничений в эволюции прокариот нам не удалось обнаружить отрицательной корреляции между силой очищающего отбора и размером генома, предсказываемой с прямолинейной популяционно-генетической точки зрения (Novichkov et al., 2009). Напротив, большие геномы, как правило, развиваются под более сильными ограничениями, чем малые, даже если рассматривать только свободноживущие микробы. Подразумевается, что образ жизни организма может быть критическим фактором эволюции генома, способствующим, в частности, приобретению генов через ГПГ в переменных условиях среды, более или менее независимо от Ne.

Поделиться:
Популярные книги

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

Звездная Кровь. Изгой V

Елисеев Алексей Станиславович
5. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
технофэнтези
рпг
фантастика: прочее
5.00
рейтинг книги
Звездная Кровь. Изгой V

Маяк надежды

Кас Маркус
5. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Маяк надежды

Печать Пожирателя

Соломенный Илья
1. Пожиратель
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Печать Пожирателя

Матрос империи. Начало

Четвертнов Александр
1. Матрос империи
Фантастика:
героическая фантастика
4.86
рейтинг книги
Матрос империи. Начало

Повелитель механического легиона. Том VIII

Лисицин Евгений
8. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VIII

Эрсус. Фаворит Смерти

Павлов Вел
2. Стезя Эрсуса
Фантастика:
фэнтези
5.00
рейтинг книги
Эрсус. Фаворит Смерти

Скандальный развод, или Хозяйка владений "Драконье сердце"

Милославская Анастасия
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Скандальный развод, или Хозяйка владений Драконье сердце

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Я снова граф. Книга XI

Дрейк Сириус
11. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я снова граф. Книга XI

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Седьмой Рубеж III

Бор Жорж
3. 5000 лет темноты
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Седьмой Рубеж III

Назад в ссср 6

Дамиров Рафаэль
6. Курсант
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в ссср 6

Газлайтер. Том 3

Володин Григорий
3. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 3