Чтение онлайн

на главную - закладки

Жанры

Maple 9.5/10 в математике, физике и образовании

Дьяконов Владимир Павлович

Шрифт:
– ln(I Z)

> hilbert(Ci(abs(t)),t,s);

– signum(s) Ssi(|s|)

> hilbert(signum(t)*Ssi(abs(t)),t,s);

Ci(|s|)

> hilbert(t*f(a*t)^2,t,s);

Как видно из этих примеров, обратное преобразование Гильберта, осуществленное над результатом прямого преобразования, не всегда восстанавливает

функцию f(t) буквально. Иногда преобразование Гильберта (см. последний пример) выражается через само себя. Много интересных примеров на это преобразование Гильберта можно найти в файле gilbert.mws.

5.11.9. Интегральное преобразование Меллина

Интегральное преобразование Меллина задается выражением

и реализуется функцией

mellin(expr, x, s)

с очевидными параметрами expr, x и s. Применение преобразования Меллина иллюстрируют следующие примеры:

> assume(а>0);

> mellin(x^a,x,s);

> mellin(f(а*х),х,s); mellin(f(a*x), x, s);

> invmellin((gamma+Psi(1+s))/s,s,x,-1..infinity);

– Heaviside(1-x)ln(1-x)

Примеры на применение преобразования Меллина можно найти в файле mellin.mws.

5.11.10. Функция addtable

Как видно из приведенных примеров, не всегда интегральные преобразования дают результат в явном виде. Получить его позволяет вспомогательная функция

addtable(tname,patt,expr,t,s)

где tname — наименование преобразования, для которого образец patt должен быть добавлен к таблице поиска. Остальные параметры очевидны. Следующие примеры поясняют применение этой функции:

> fouriersin(f(t),t,s);

fouriersin(f(t), t, s)

> addtable(fouriersin,f(t),F(s), t,s);

> fouriersin(f(x),x,2);

F(z)

5.12. Регрессионный анализ

5.12.1. Функция fit для регрессии в пакете stats

В этой главе до сих пор рассматривались точные функции преобразования или представления аналитических функций. Однако часто возникает и другая задача — некоторую совокупность данных, например заданных таблично, надо приближенно представить некоторой известной аналитической функцией. Эта задача решается регрессионным анализом или просто регрессией. Параметры приближающей функции выбираются так, что она приближенно (по критерию минимума среднеквадратической ошибки) аппроксимирует исходную зависимость. Последняя,

чаще всего, бывает представлена некоторым набором точек (например, полученных в результате эксперимента).

Наглядная визуализация регрессии была рассмотрена выше — см. рис. 5.23. А теперь рассмотрим типовые средства проведения регрессии (файл regres).

Для проведения регрессионного анализа служит функция fit из пакета stats, которая вызывается следующим образом:

stats[fit,leastsquare[vars,eqn,parms]](data)

или

fit[leastsquare[vars,eqn,parms]](data)

где data — список данных, vars — список переменных для представления данных, eqn — уравнение, задающее аппроксимирующую зависимость (по умолчанию линейную), parms — множество параметров, которые будут заменены вычисленными значениями.

5.12.2. Линейная и полиномиальная регрессия с помощью функции fit

На приведенных ниже примерах показано проведение регрессии с помощью функции fit для зависимостей вида у(х):

> with(stats):Digits:=5;

Digits := 5

> fit[leastsquare[[x,у]]] ([[1, 2, 3, 4], [3, 3.5, 3.9, 4.6]] );

у = 2.4500 + .52000 x

> fit[leastsquare[[x,y, y=a*x^2+b*x+c]] ([[1,2,3,4], [1.8,4.5,10,16.5]]);

у = 0.9500000000 x² + 0.2100000000 x + 0.5500000000

В первом примере функция регрессии не задана, поэтому реализуется простейшая линейная регрессия, а функция fit возвращает полученное уравнение регрессии для исходных данных, представленных списками координат узловых точек. Это уравнение аппроксимирует данные с наименьшей среднеквадратичной погрешностью. Во втором примере задано приближение исходных данных степенным многочленом второго порядка. Вообще говоря, функция fit обеспечивает приближение любой функцией в виде полинома, осуществляя полиномиальную регрессию.

Рисунок 5.29 показывает регрессию для одних и тех же данных полиномами первой, второй и третьей степени с построением их графиков и точек исходных данных.

Рис. 5.29. Примеры регрессии полиномами первой, второй и третьей степени

Нетрудно заметить, что лишь для полинома третьей степени точки исходных данных точно укладываются на кривую полинома, поскольку в этом случае (4 точки) регрессия превращается в полиномиальную аппроксимацию. В других случаях точного попадания точек на линии регрессии нет, но обеспечивается минимум среднеквадратической погрешности для всех точек — следствие реализации метода наименьших квадратов.

Применение регрессии обычно оправдано при достаточно большом числе точек исходных данных. При этом регрессия может использоваться для сглаживания данных.

5.12.3. Регрессия для функции ряда переменных

Функция fit может обеспечивать регрессию и для функций нескольких переменных. При этом надо просто увеличить размерность массивов исходных данных. В качестве примера ниже приведен пример регрессии для функции двух переменных

Поделиться:
Популярные книги

Истинная со скидкой для дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Истинная со скидкой для дракона

Герцог и я

Куин Джулия
1. Бриджертоны
Любовные романы:
исторические любовные романы
8.92
рейтинг книги
Герцог и я

На границе империй. Том 9. Часть 5

INDIGO
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 5

Росток

Ланцов Михаил Алексеевич
2. Хозяин дубравы
Фантастика:
попаданцы
альтернативная история
фэнтези
7.00
рейтинг книги
Росток

Демон

Парсиев Дмитрий
2. История одного эволюционера
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Демон

Огромный. Злой. Зеленый

Новикова Татьяна О.
1. Большой. Зеленый... ОРК
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Огромный. Злой. Зеленый

Запечатанный во тьме. Том 1. Тысячи лет кача

NikL
1. Хроники Арнея
Фантастика:
уся
эпическая фантастика
фэнтези
5.00
рейтинг книги
Запечатанный во тьме. Том 1. Тысячи лет кача

Тайны ордена

Каменистый Артем
6. Девятый
Фантастика:
боевая фантастика
попаданцы
7.48
рейтинг книги
Тайны ордена

Кодекс Охотника. Книга VI

Винокуров Юрий
6. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга VI

Неудержимый. Книга XXI

Боярский Андрей
21. Неудержимый
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Неудержимый. Книга XXI

Возлюби болезнь свою

Синельников Валерий Владимирович
Научно-образовательная:
психология
7.71
рейтинг книги
Возлюби болезнь свою

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Виконт, который любил меня

Куин Джулия
2. Бриджертоны
Любовные романы:
исторические любовные романы
9.13
рейтинг книги
Виконт, который любил меня

Академия проклятий. Книги 1 - 7

Звездная Елена
Академия Проклятий
Фантастика:
фэнтези
8.98
рейтинг книги
Академия проклятий. Книги 1 - 7