Маркетинг (Инновационный менеджмент)
Шрифт:
При допустимом преобразовании шкалы значение средней величины, очевидно, меняется. Но выводы о том, для какой совокупности среднее больше, а для какой - меньше, не должны меняться (в соответствии с требованием инвариантности выводов, принятом в РТИ) . Сформулируем соответствующую математическую задачу поиска вида средних величин, результат сравнения которых устойчив относительно допустимых преобразований шкалы. Пусть f(X1, X2,...,Xn) - среднее по Коши. Пусть
f(Y1, Y2,...,Yn) < f(Z1, Z2,...,Zn). (1)
Тогда для устойчивости результата сравнения средних необходимо, чтобы для любого
f(g(Y1), g(Y2),..., g(Yn)) < f (g(Z1), g(Z2),..., g(Zn)), (2)
т.е. среднее преобразованных значений из первой совокупности также было меньше среднего преобразованных значений для второй совокупности. Причем сформулированное условие должно быть верно для любых двух совокупностей Y1, Y2,...,Yn и Z1, Z2,...,Zn. Согласно РТИ только такими средними можно пользоваться при анализе мнений экспертов..
С помощью математической теории [2] удается описать вид допустимых средних в основных шкалах:
в шкале наименований в качестве среднего годится только мода;
из всех средних по Коши в порядковой шкале в качестве средних можно использовать только члены вариационного ряда (порядковые статистики), в частности, медиану (при нечетном объеме выборки; при четном же объеме следует применять один из двух центральных членов вариационного ряда - как их иногда называют, левую медиану или правую медиану), но не среднее арифметическое, среднее геометрическое и т.д.;
в шкала интервалов из всех средних по Колмогорову можно применять только среднее арифметическое;
в шкале отношений из всех средних по Колмогорову устойчивыми относительно сравнения являются только степенные средние и среднее геометрическое.
Приведем численный пример, показывающий некорректность использования среднего арифметического f(X1, X2) = (X1+X2)/2 в порядковой шкале. Пусть Y1= 1, Y2 = 11, Z1 = 6, Z2 = 8. Тогда f(Y1, Y2) = 6, что меньше, чем f(Z1, Z2) = 7. Пусть строго возрастающее преобразование g таково, что g(1) = 1, g(6) = 6, g(8) = 8, g(11) = 99. Тогда f(g(Y1), g(Y2)) = 50, что больше, чем f(g(Z1), g(Z2)) = 7. Как видим, в результате преобразования шкалы упорядоченность средних изменилась.
Приведенные результаты о средних величинах широко применяются, причем не только в теории экспертных оценок или социологии, но и, например, для анализа методов агрегирования датчиков в АСУ ТП доменных печей. Велико прикладное значение РТИ в задачах стандартизации и управления качеством, в частности, в квалиметрии. Так, например, любое изменение коэффициентов весомости единичных показателей качества продукции приводит к изменению упорядочения изделий по средневзвешенному показателю.
Рассмотрим в качестве примера один сюжет, связанный с ранжировками и рейтингами.
4. Методы средних баллов
В настоящее время распространены экспертные, маркетинговые, квалиметрические, социологические и др. опросы, в которых опрашиваемых просят выставить баллы объектам, изделиям, технологическим процессам, предприятиям, проектам, заявкам на выполнение научно-исследовательских работ, идеям, проблемам, программам, политикам и т.п., а затем рассчитывают средние баллы и рассматривают
4.1. Пример сравнения восьми проектов
Рассмотрим конкретный пример применения только что сформулированного подхода.
Анализировались восемь проектов, предлагаемых для включения в план стратегического развития фирмы, обозначенные следующим образом: Д, Л, М-К, Б, Г-Б, Сол, Стеф, К (по фамилиям менеджеров, предложивших их для рассмотрения). Все проекты были направлены 12 экспертам, назначенным Правлением фирмы. В приведенной ниже табл.2 приведены ранги восьми проектов, присвоенные им каждым из 12 экспертов в соответствии с их представлением о целесообразности включения проекта в стратегический план фирмы (ранг 1 - самый лучший проект, который обязательно надо реализовать, ранг 2 - второй по привлекательности проект, ... , ранг 8 - наиболее сомнительный проект, который реализовывать стоит лишь в последнюю очередь).
Табл. 2. Ранги 8 проектов по степени привлекательности для включения в план
стратегического развития фирмы
– -- Table start------------------------------------------------------------? эксперта
|
Д
|
Л
|
М-К
|
Б
|
Г-Б
|
Сол
|
Стеф
|
К
| ---------------------------------------------------------------------------
1
|
5
|
3
|
1
|
2
|
8
|
4
|
6
|
7
| ---------------------------------------------------------------------------
2
|
5
|
4
|
3
|
1
|
8
|
2
|
6
|
7
| ---------------------------------------------------------------------------
3
|
1
|
7
|
5
|
4
|
8
|
2
|
3
|
6
| ---------------------------------------------------------------------------
4
|
6
|
4
|
2,5
|
2,5
|
8
|
1
|
7
|
5
| ---------------------------------------------------------------------------
5