Чтение онлайн

на главную - закладки

Жанры

Машина-двигательОт водяного колеса до атомного двигателя
Шрифт:

Схема электромотора постоянного тока.

В каждом электродвигателе имеется неподвижная часть — корпус, или статор, и подвижная, вращающаяся, — ротор.

Статор имеет выступы — полюсы, между которыми вращается ротор. Вокруг полюсов намотана проводящая электричество металлическая проволока в изоляции. Это обмотка статора.

Имеется обмотка и на роторе. Если теперь направить электрический ток и в обмотку статора и в обмотку ротора, то получится следующее.

Из физики известно, что

ток, проходя по проводнику, создает вокруг этого проводника магнитное поле. Значит, такое поле возникнет и вокруг статора и вокруг ротора. Это будет означать, что внутри одного магнита оказался другой. А в этом случае, как известно, магниты будут стремиться встать друг против друга своими разноименными полюсами. Северный полюс ротора устремится к южному полюсу статора — возникнет движение ротора. И это движение будет происходить всё время, пока идет ток по обмоткам, потому что у ротора положение полюсов определяется неподвижными щетками, по которым подводится ток, и такого момента, когда разноименные полюса статора и ротора притянутся, не наступает. Как только один виток обмотки ротора, стоящий возле щеток, повернется, следом за ним подойдет к щеткам другой виток и тоже повернется. Так возникает сила, поворачивающая ротор. Эту силу можно использовать, соединив вал ротора с любой машиной или станком.

Но для того, чтобы электромотор мог вырабатывать механическую энергию и приводить в движение рабочие машины, к нему нужно подвести электрический ток.

К сожалению, электрическая энергия в природе не находится в таком же свободном виде, как энергия воды или ветра, не может быть получена так же легко, как тепловая, путем сжигания топлива. Чтобы вырабатывать электрическую энергию, то есть получать электрический ток, обычно нужны специальные машины. Об этих машинах мы уже говорили в связи с гидротурбинами. Они называются, как нам уже известно, электрогенераторами. Внешне они похожи на электромоторы, только если электромоторы электрическую энергию превращают в механическую энергию вращения, то они, наоборот, механическую энергию вращения превращают в электрическую энергию.

Так, например, двигатель, о котором говорилось выше, можно было бы обратить в электрогенератор следующим образом.

Необходимо было бы по прежнему посылать ток только в обмотку статора. В обмотке ротора же, если ротор чем-либо привести во вращение, появился бы свой электрический ток. Ведь при вращении обмотка ротора пересекала бы магнитное поле статора и, что так же известно из физики, в витках этой обмотки возникал бы электрический ток.

Ток от ротора можно отводить и использовать для любых нужд, в том числе и для питания электродвигателей. Значит, чтобы выработать электрический ток, надо чем-то вращать вал электрогенератора. Полученный электрический ток будет использован в электромоторах, и вновь произойдет превращение электрической энергии в механическую.

Вот и выходит, что электромоторы не «самостоятельные» двигатели. Они именуются двигателями вторичными. Для выработки электрического тока всё равно нужны «первичные» двигатели, которые смогли бы вращать электрогенераторы, то есть нужны двигатели такие, как гидротурбина, паровая машина, паровая турбина или двигатель внутреннего сгорания, о котором будет сказано дальше.

Электромоторы же удобны тем, что, коль скоро электрическую энергию можно передавать по проводам на расстоянии, они могут стоять прямо возле каждого станка или каждой машины. Тут не требуется сложных передач — валов, шкивов, ремней и прочего, — с помощью которых передавалось бы движение на рабочие машины от любых других двигателей.

Способ приводить в движение каждую рабочую машину с помощью своего электромотора инженеры называют «индивидуальным приводом».

Итак, появившийся электромотор требовал создания станций, на которых бы вырабатывался электрический ток. Но,

может быть, вам покажется слишком сложной такая комбинация из первичного двигателя, электрогенератора и вторичных двигателей — электромоторов? Быть может, вы считаете, что приводить рабочие машины по-старому, с помощью одного первичного двигателя, всё же проще, удобнее и дешевле?

Но не забудьте, что электрический ток потребовался не только для электромоторов. Ведь с 1875 года, после того, как на лондонской выставке наш русский инженер Павел Николаевич Яблочков продемонстрировал новый источник света — «электрическую свечу», электрическое освещение стало всё шире и шире распространяться по всему миру. Значит, нужно было вырабатывать ток и для освещения.

А потом всё больше и больше электричество стало входить и в промышленность, и в быт, и в транспорт.

Вопрос о создании электростанций с мощными первичными двигателями уже в конце XIX века стал одной из важнейших проблем техники. Электростанции строились в городах, при крупных заводах.

В 1882–1883 годах первая электростанция появилась и в России. Она была размещена на барже и стояла на реке Мойке, в Петербурге. Электрогенераторы приводились в движение шаровыми машинами. Мощность этой станции была всего 150 киловатт (204 лошадиных силы). Более совершенные и мощные электростанции появились в России в 1887–1888 годах.

Основной двигатель тепловых электростанций

Вы уже знаете, что для привода электрических генераторов можно использовать водяные двигатели — гидротурбины. Но нельзя забывать, что электрический ток хоть и можно передавать на расстояние, но не на любое, а на сравнительно небольшое, иначе в проводах будет потеряно много полезной энергии. Кроме того, не на всякой реке выгодно строить гидростанцию, — река должна быть полноводной, требуется водохранилище — озеро, из которого пополнялась бы река в периоды спада воды. Наконец, чтобы построить гидростанцию, надо выполнить большие работы по сооружению плотины, специального здания и так далее. Поэтому вместе с созданием гидростанций с конца XIX века широко развернулось строительство и теплостанций. Даже теперь, когда в нашей стране только за годы советской власти построено и введено в действие 90 гидростанций большой и средней мощности и множество мелких гидростанций, но еще до сих пор 80 % всей электроэнергии вырабатывают у нас тепловые электростанции. На этих электростанциях в качестве первичных двигателей используются двигатели тепловые.

Сначала таким двигателем служила паровая машина. Но вот, на пороге XX века, в 1900 году наступил перелом.

Заводу Парсонса были заказаны две турбины мощностью по 1000 киловатт каждая для электростанции немецкого города Эльберфельда. Этот заказ удивил очень многих, — в новый двигатель не верили; казалось, что паровая машина, проверенная практикой, надежнее.

Парсонс понимал ответственность и постарался особенно тщательно выполнить заказ. И действительно, испытания прошли успешно. Новый двигатель, правда, еще несколько уступал лучшим паровым машинам по экономичности, — он потреблял несколько больше пара на киловатт-час, но для привода электрогенератора оказался очень удобен: вращался равномерно, плавно; легко обслуживался.

С этих пор многие заводы Европы и Америки начали строить паровую турбину, и не прошло десятилетия, как она стала основным двигателем на тепловых электростанциях, крупных военных кораблях и даже на торговых морских судах.

Так, перешагнув порог XX века, паровая машина почти полностью уступила свое место другому паровому двигателю — турбине.

Современная паровая турбина в одном агрегате может развивать мощность до 200 000 и даже до 300 000 киловатт! Ни один поршневой двигатель на такие мощности не строится. И лишь гидравлическая турбина способна соревноваться с нею.

Поделиться:
Популярные книги

Смертельно влюблён

Громова Лиза
Любовные романы:
современные любовные романы
4.67
рейтинг книги
Смертельно влюблён

Свет Черной Звезды

Звездная Елена
6. Катриона
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Свет Черной Звезды

На границе империй. Том 10. Часть 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 3

Маленькая хозяйка большого герцогства

Вера Виктория
2. Герцогиня
Любовные романы:
любовно-фантастические романы
7.80
рейтинг книги
Маленькая хозяйка большого герцогства

Отверженный VII: Долг

Опсокополос Алексис
7. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Отверженный VII: Долг

Найти себя. Трилогия

Эс Евгений
Найти себя
Фантастика:
фэнтези
5.00
рейтинг книги
Найти себя. Трилогия

Ритуал для призыва профессора

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Ритуал для призыва профессора

Темный Лекарь 11

Токсик Саша
11. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Темный Лекарь 11

Господин следователь. Книга 3

Шалашов Евгений Васильевич
3. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь. Книга 3

Охота на попаданку. Бракованная жена

Герр Ольга
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Охота на попаданку. Бракованная жена

Сандро из Чегема (Книга 1)

Искандер Фазиль Абдулович
Проза:
русская классическая проза
8.22
рейтинг книги
Сандро из Чегема (Книга 1)

Элита элит

Злотников Роман Валерьевич
1. Элита элит
Фантастика:
боевая фантастика
8.93
рейтинг книги
Элита элит

Ученик

Первухин Андрей Евгеньевич
1. Ученик
Фантастика:
фэнтези
6.20
рейтинг книги
Ученик

Идеальный мир для Лекаря 17

Сапфир Олег
17. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 17