Чтение онлайн

на главную - закладки

Жанры

Математические модели в естественнонаучном образовании. Том II
Шрифт:

Другой способ классификации методов построения филогенетических деревьев состоит в том, чтобы разделить их на два класса: те, которые выбирают дерево на основе некоторого критерия оптимальности, и те, которые представляют собой алгоритмы, создающие дерево. Метод максимальной экономии и метод максимального правдоподобия основаны на критериях оптимальности, тогда как обсуждаемые ранее дистанционные методы являются алгоритмическими. Некоторые исследователи утверждают, что методы имеющие критерии оптимальности по своей сути превосходны, потому что они, по крайней мере, ясно указывают, на чем основан выбор дерева. Однако, поскольку поиск оптимального из большого числа деревьев может оказаться невыполнимым с вычислительной точки зрения, компьютерные реализации методов экономии и правдоподобия иногда начинаются с рассмотрения

деревьев, созданных алгоритмическим методом, например, методом присоединение соседей, или одного из его вариантов, полученного путем циклического перемещения нескольких веток исходного дерева.

Одна из трудностей выбора оптимального метода для использования заключается в том, что можно найти хорошие аргументы за и против любого из методов. Тем не менее, необходимость строить деревья для исследования биологических проблем слишком велика, чтобы можно было не использовать существующие методы, а ожидать появления новых. Достаточно разумный подход заключается в том, чтобы всегда использовать несколько различных методов для имеющихся данных. Вместо того, чтобы доверять одному методу, для получения точного дерева, посмотрите, дают ли разные методы примерно одинаковые результаты. Они часто это делают и если используемые методы этого не делают, то стоит выяснить, почему такое происходит. Недостаточно просто запустить компьютерную программу на имеющихся данных и принять получившееся дерево как истинное.

Даже когда дерево уже выбрано тем или иным методом, было бы желательно дать количественную оценку, насколько можно быть уверенным в правильности выбора. Частичный ответ на этот вопрос может дать статистический метод самопроверки, – бутстрэппинга, что буквально означает «подтягивание за ремешки обуви». В процедуре самопроверки истинные последовательности данных используются для создания набора новых, псевдореплицированных последовательностей той же длины. Основания в конкретном сайте для генерации новых последовательностей выбираются с той же вероятностью какую имели основания, появляющиеся в случайно выбранном сайте в исходных последовательностях. Таким образом будет построено и записано дерево для филогении псевдорепликантов. Затем эта процедура повторяется много раз, что дает большую коллекцию подобных деревьев. Если достаточно высокий процент получаемых таким способом деревьев согласуется с первоначальным деревом, полученным с использованием исходных данных, то можем быть уверены в истинности проверяемого дерева.

Однако важным предостережением при использовании вышеописанного метода является то, что этот метод помогает только оценить влияние изменчивости в последовательностях на построение дерева. Данный метод ничего не говорит о фундаментальной обоснованности алгоритма, с помощью которого выбирается дерево – он только указывает, как изменчивость данных могла повлиять на результат.

На большом количестве таксонов настоятельно рекомендуется использовать специализированное компьютерное программное обеспечение для использования любого из упомянутых методов. Двумя широко используемыми пакетами, реализующими различные методы, являются PAUP* (Суоффорд, 2002) и PHYLIP (Фельзенштейн, 1993). Если вдруг когда-нибудь получите доступ к любому из них, то стоит изучить их возможности.

5.6. Приложения и перспективы

Вернемся к вопросу о гоминоидной филогении, который звучал по введении в эту главу. Какое дерево можно вывести из данных митохондриальной ДНК? Хотя можно было бы прочитать ответ в специализированной литературе, но предпочтительно, если найдете его самостоятельно. В упражнениях ниже будет возможность применить некоторые методы пройденной главы к данным, начиная либо с необработанных последовательностей, либо с некоторых расстояний, уже вычисленных из последовательностей.

Анализ данных, который впервые выполнил Хаясака с соавторами в 1988 году опирается в первую очередь на использование алгоритма присоединения соседей, как и анализ, который можно легко осуществить с помощью MATLAB. Если есть доступ к специализированному программному обеспечению, предназначенному для применения метода максимальной экономии, максимального правдоподобия или других методов, то настоятельно рекомендуется посмотреть, дают ли эти методы аналогичные результаты.

Кроме того, имейте в виду, что анализ, который делаете, всегда основан лишь на одном

конкретном участке ДНК. Исследования, основанные на других ортологичных последовательностях, могут дать разные результаты. Кроме того, существует много подходов к филогенетическому выводу, которые не основаны на последовательностях. Должны быть скрупулёзно изучены доказательства адекватности каждого из используемых методов, прежде чем делать сильные заявления о филогении гоминоидов.

По мере развития методов построения филогенетического дерева из данных последовательности ДНК они были использованы и для изучения ряда других интересных вопросов. Даже беглый обзор высокорейтингового исследовательского журнала, такого как Science, обнаруживает большое количество статей, в которых генетические последовательности используются для исследования эволюции различных видов от общего предка. Вот лишь несколько примеров некоторых недавних приложений.

1. Исследование того, параллельна ли эволюция нескольких видов друг другу: например, эволюцию хозяев и паразитов можно изучить, построив отдельные филогенетические деревья для каждого из них. Сходство топологий деревьев может указывать на то, эволюционировали ли паразиты вместе с хозяином, или паразиты «перепрыгнули» от одного вида хозяина к другому, изучал Хафнер в 1994 году. Аналогичным образом, деревья для двух симбиотических видов, таких как муравьи, растущие грибы и грибы, которые они выращивают, помогают указать, как далеко в эволюционной истории простирается симбиотическое партнерство. Эти вопросы изучали Чапел и Хинкл в 1994.

2. Определение вероятных источников инфекции вируса иммунодефицита человека (ВИЧ) путем построения деревьев из последовательностей ВИЧ у ряда инфицированных лиц: Было несколько судебно-медицинских применений этого, к случаям СПИДа во Флориде, как следует из публикаций Альтмана 1994 года и Оу 1992 года, а так же их приложения к делу врача, обвиняемого в умышленном введении ВИЧ бывшему любовнику, исследовал Фогель в серии работ 1997 и 1998 годов.

3. Изучением того, вошли ли гены в геном определённого вида через латеральный перенос занимались Андерссон и Зальцберг в 2001 году: когда дерево строится из последовательностей ДНК для гена, это действительно «генное дерево», показывающее отношения генов, которые могут быть, а могут и не быть такими же, как отношения таксонов. Поскольку считается, что некоторые человеческие гены были получены путем латерального переноса от бактерий, заразивших нас, некоторые гены могут оказаться более тесно связанными с некоторыми бактериями, чем с другими млекопитающими. Если подозревается, что ген возник у эукариот в результате латерального переноса от бактерий, то можно построить дерево, используя последовательности генов как эукариот, так и бактерий. Модель кластеризации должна помочь определить, были ли гены латерально переданы или нет.

4. Мониторинг ограничений на охоту на китов: образцы ДНК из китового мяса, продаваемого в качестве пищи, и от китов в дикой природе были использованы для строительства дерева, указывая не только на виды продаваемых китов, но даже на океан происхождения, что доказали Бейкер и Палумби в 1994 году.

5. Исследование гипотезы происхождения человека «Из Африки»: паттерн кластеризации на дереве, построенном из последовательностей ДНК человека из этнических групп по всему миру, должен помочь указать, как человеческие популяции связаны и, следовательно, как и откуда они распространяются. Этим вопросом занимался Канн, опубликовав результаты в 1987 году, и Гиббонс, – в 1992.

Поскольку последовательности, используемые в большинстве опубликованных исследований, легко доступны через Интернет в базах данных, таких как GenBank, можно самостоятельно исследовать набор данных из этих или других исследований.

Филогенетические методы, основанные на последовательностях, все еще активно исследуются биологами, химиками, статистиками, информатиками, физиками и математиками. Есть много проблем, подходов и методов, которые здесь не затронули. То, как последовательности ДНК идентифицируются как хорошие данные, на которых основывается филогения, как эти последовательности выравниваются и как можно измерить уверенность, которую должны иметь в дереве, – это только три из актуальных тем, которые были проигнорированы. Более полные обзоры классических результатов настоящей тематики можно найти в работах Хиллисеталь 1996 года и Ли 1997 года.

Поделиться:
Популярные книги

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Идеальный мир для Лекаря 13

Сапфир Олег
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 13

Сломанная кукла

Рам Янка
5. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сломанная кукла

Пехотинец Системы

Poul ezh
1. Пехотинец Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Пехотинец Системы

На границе империй. Том 7. Часть 5

INDIGO
11. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 7. Часть 5

Реванш. Трилогия

Максимушкин Андрей Владимирович
Фантастика:
альтернативная история
6.73
рейтинг книги
Реванш. Трилогия

Бастард Императора. Том 7

Орлов Андрей Юрьевич
7. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 7

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Кодекс Крови. Книга I

Борзых М.
1. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга I

Эртан. Дилогия

Середа Светлана Викторовна
Эртан
Фантастика:
фэнтези
8.96
рейтинг книги
Эртан. Дилогия

О, мой бомж

Джема
1. Несвятая троица
Любовные романы:
современные любовные романы
5.00
рейтинг книги
О, мой бомж

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Этот мир не выдержит меня. Том 3

Майнер Максим
3. Первый простолюдин в Академии
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Этот мир не выдержит меня. Том 3

Стеллар. Трибут

Прокофьев Роман Юрьевич
2. Стеллар
Фантастика:
боевая фантастика
рпг
8.75
рейтинг книги
Стеллар. Трибут