Чтение онлайн

на главную - закладки

Жанры

Математика для любознательных
Шрифт:

Волос, увеличенный по толщине в биллион раз, был бы раз в 8 шире земного шара, а муха при таком увеличении была бы в 70 раз толще Солнца!

Взаимоотношение между миллионом, биллионом и триллионом можно с некоторою наглядностью представить следующим образом. В Ленинграде еще недавно было миллион жителей. Вообразите же себе длинный прямой ряд городов, таких как Ленинград, - целый миллион их; в этой цепи столиц, тянущихся на семь миллионов километров (в 20 раз дальше Луны) будет насчитываться биллион жителей… Теперь вообразите, что перед вами не один такой ряд городов, а целый миллион рядов, т. е. квадрат, каждая сторона которого состоит из миллиона Ленинградов и который внутри сплошь уставлен Ленинградами: в этом квадрате будет триллион жителей.

Одним триллионом кирпичей можно было бы, размещая их плотным слоем по твердой поверхности

земного шара, покрыть все материки равномерным сплошным пластом высотою с четырехэтажный дом (16 м).

Если бы все видимые в сильнейшие телескопы звезды обоих небесных полушарий, т. е. не менее 500 миллионов звезд - были обитаемы и населены каждая, как наша Земля, то на всех этих звездах, вместе взятых, насчитывался бы только один триллион людей.

Последнюю иллюстрацию мы заимствуем из мира мельчайших частиц, составляющих все тела природы - из мира молекул. Молекула по ширине меньше точки типографского шрифта этой книги примерно в миллион раз. Вообразите же триллион таких молекул [89] , нанизанных вплотную на одну нитку. Какой длины была бы эта нить? Ею можно было бы семь раз обмотать земной шар по экватору!

89

В каждом кубич. сантиметре воздуха (т. е. примерно в наперстке) насчитывается - отметим кстати - от 20 до 30 триллионов молекул. Как велико это число, видно, между прочим, из того, что достигнув с помощью совершеннейших воздушных насосов самой крайней степени разрежения - в сто миллиардов раз, - мы все-таки будем еще иметь в каждом куб. сантиметре до 270 миллионов молекул! Не знаешь, чему изумляться больше: огромной численности молекул или их невообразимой малости…

Квадрильон

В старинной (XVIII в.) «Арифметике» Магницкого, о которой мы не раз уже упоминали, приводится таблица названий классов чисел, доведенная до квадрильона, т. е. единицы с 24 нулями [90] .

Это было большим шагом вперед по сравнению с более древним числовым инвентарем наших предков. Древняя славянская лестница больших чисел была до XV века гораздо скромнее и достигала только до ста миллионов. Вот эта старинная нумерация:

90

Магницкий придерживался той классификации чисел, которая дает каждое новое наименование миллиону низших единиц (биллион - миллион миллионов, и т. д.). Такая система наименований больших чисел принята была и в более поздних русских школьных руководствах (насколько я могу судить по имеющимся у меня русским учебникам конца XVIII и начала XIX века). И лишь сравнительно недавно получила у нас распространение нынешняя, «обиходная» система наименования.

Магницкий широко раздвинул древние пределы больших чисел в своей табличке. Но он считал практически бесполезным доводить систему наименований числовых великанов чересчур далеко. Вслед за его таблицей он помещает такие стихи:

Числ есть бесконечно,

умом нам недотечно,

И никто знает конца,

кроме всех бога творца.

Несть бо нам определьно

тем же есть и безцельно

Множайших чисел искати

и больше сей писати

Превосходной таблицы

умов наших границы

И аще кому треба

счисляти что внутрь неба

Довлеет числа сего

к вещем всем мира сего.

Наш старинный математик хотел сказать этими стихами, что так как ум человеческий не может обнять бесконечного ряда чисел, то бесцельно составлять числа больше тех, которые представлены в его таблице, «умов наших границе». Заключающиеся в ней числа (от 1-цы до квадрильонов включительно) достаточны для исчисления всех вещей видимого мира, - достаточны для тех, «кому треба счисляти

что внутрь неба».

Любопытно отметить, что Магницкий оказался в данном случае почти прозорливцем. По крайней мере, до самого последнего времени наука не ощущала еще нужды в числах высшего наименования, чем квадрильоны. Расстояния самых отдаленных звездных скоплений, по новейшим оценкам астрономов исчисляемые в сотни тысяч «цветовых лет» [91] , в переводе на километры выражаются триллионами. Это - доступные сильнейшим телескопам видимые границы вселенной. Расстояние всех других звезд, расположенных «внутри неба», выражаются, конечно, меньшими числами. Общее чис - л о звезд исчисляется «всего лишь» сотнями миллионов. Древность старейших из них не превышает, по самой щедрой оценке, биллиона лет. Массы звезд исчисляются тысячами квадрильонов тонн.

91

Световой год - путь, проходимый лучом света в 1 год (свет пробегает в секунду 300000 км); он равен примерно 9 1/2 биллионам км.

Обращаясь в другую сторону, к миру весьма малых величин, мы и здесь не ощущаем пока надобности пользоваться числами свыше квадрильонов. Число молекул в кубическом сантиметре газа - одно из самых больших множеств, реально исчисленных, - выражается десятками триллионов. Число колебаний в секунду для самых быстроколеблющихся волн лучистой энергии (лучей Гесса) не превышает 40 триллионов. Если бы мы вздумали подсчитать, сколько капель в океане (считая даже объем капли 1 куб. миллиметр, - что весьма немного), нам и тогда не пришлось бы обратиться к наименованиям выше квадрильона, потому что число это исчисляется только тысячами квадрильонов.

И лишь при желании выразить числом, сколько граммов вещества заключает вся наша солнечная система, понадобились бы наименования выше квадрильона, потому что в числе этом 34 цифры (2 и 33 нуля): это - две тысячи квинтильонов.

Если вам интересно, каковы наименования сверх-исполинов, следующих за квадрильоном, вы найдете их в приводимой здесь табличке:

Далее наименований не имеется. Но и эти, в сущности, почти не употребляются, да и мало кому известны. Как велики выражаемые ими числа, видно хотя бы из того, что число граммов вещества во вселенной (по современным воззрениям) «всего» 10 нональонов.

Кубическая миля и кубический километр

В заключение остановимся на арифметическом (вернее, пожалуй, геометрическом) великане особого рода - на кубической миле: мы имеем в виду географическую милю - составляющую 15-ю долю экваториального градуса и заключающую 7420 метров. С кубическими мерами наше воображение справляется довольно слабо; мы обычно значительно преуменьшаем их величину - особенно для крупных кубических единиц, с которыми приходится иметь дело в астрономии. Но если мы превратно представляем себе уже кубическую милю - самую большую из наших объемных мер, - то как ошибочны должны быть наши представления об объеме земного шара, других планет, солнца? Стоит поэтому уделить немного времени и внимания, чтобы постараться приобрести о кубической миле более соответствующее представление.

В дальнейшем воспользуемся картинным изложением талантливого германского популяризатора А. Бернштейна, приведя (в несколько измененном виде) длинную выписку из его полузабытой книжечки - «Фантастическое путешествие через вселенную» (появившейся более полувека тому назад).

«Положим, что по прямому шоссе мы можем видеть на целую милю (7 1/2 км) вперед. Сделаем мачту длиною в милю и поставим ее на одном конце дороги, у верстового столба. Теперь взглянем вверх и посмотрим, как высока наша мачта. Положим, что возле этой мачты стоит одинаковый с ней высоты человеческая статуя - статуя более семи километров высоты. В такой статуе колено будет находиться на высоте 1800 метров; нужно было бы взгромоздить одну на другую 25 египетских пирамид, чтобы достигнуть до поясницы статуи!

Поделиться:
Популярные книги

Стратегия обмана. Трилогия

Ванина Антонина
Фантастика:
боевая фантастика
5.00
рейтинг книги
Стратегия обмана. Трилогия

Переиграть войну! Пенталогия

Рыбаков Артем Олегович
Переиграть войну!
Фантастика:
героическая фантастика
альтернативная история
8.25
рейтинг книги
Переиграть войну! Пенталогия

Метаморфозы Катрин

Ром Полина
Фантастика:
фэнтези
8.26
рейтинг книги
Метаморфозы Катрин

Пехотинец Системы

Poul ezh
1. Пехотинец Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Пехотинец Системы

30 сребреников

Распопов Дмитрий Викторович
1. 30 сребреников
Фантастика:
попаданцы
альтернативная история
фэнтези
фантастика: прочее
5.00
рейтинг книги
30 сребреников

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6

Том 1. Солнце мертвых

Шмелев Иван Сергеевич
1. И. Шмелев. Собрание сочинений в 5 томах
Проза:
классическая проза
6.00
рейтинг книги
Том 1. Солнце мертвых

Шаг в бездну

Муравьёв Константин Николаевич
3. Перешагнуть пропасть
Фантастика:
фэнтези
космическая фантастика
7.89
рейтинг книги
Шаг в бездну

Надуй щеки! Том 5

Вишневский Сергей Викторович
5. Чеболь за партой
Фантастика:
попаданцы
дорама
7.50
рейтинг книги
Надуй щеки! Том 5

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

ИФТФ им. Галушкевича. Трилогия

Кьяза
Фантастика:
фэнтези
юмористическая фантастика
5.00
рейтинг книги
ИФТФ им. Галушкевича. Трилогия

Неправильный лекарь. Том 1

Измайлов Сергей
1. Неправильный лекарь
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Неправильный лекарь. Том 1

Алые перья стрел

Крапивин Владислав Петрович
Детские:
детские приключения
8.58
рейтинг книги
Алые перья стрел

Сын Тишайшего 2

Яманов Александр
2. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Сын Тишайшего 2