Материаловедение. Шпаргалка
Шрифт:
Переход сплавов из жидкого состояния в твердое при кристаллизации происходит в интервале температур, лежащих между линией ликвидуса и эвтектической температурой, которой соответствует линия солидуса.
Правилу отрезков подчиняются все количественные изменения в сплавах при кристаллизации. В зависимости от состава все сплавы делятся на доэвтектические и заэвтектические. Доэвтектические сплавы содержат компонента А свыше (100-Вэ)%. В них он является избыточным компонентом. В заэвтектических сплавах избыточным является компонент В (его количество превышает Вэ).
Количество каждой структурной составляющей вычисляется по правилу отрезков применительно к эвтектической температуре.
Диаграмма состояний II
На диаграмме различают три фазовые области:
1. Выше линии ликвидуса АDВ находится область жидкой фазы Ж.
2. Под ней до линии солидуса АDВ расположена двухфазная область б + Ж. Фаза б представляет твердый раствор компонентов А и В, зерна имеют единую кристаллическую решетку. Однако у сплавов разного состава число атомов компонентов А и В в элементарных ячейках решетки различно.
3. Область, расположенная под линией солидуса, является однофазной (фаза б).
В отличие от сплавов смесей зерен практически чистых компонентов каждый из затвердевших сплавов на диаграмме состояния представляет совокупность зерен фазы, которые внешне ничем не отличаются друг от друга.
В случае ускоренного охлаждения сплава при кристаллизации диффузионные процессы не успевают завершиться, и центральная часть каждого зерна оказывается обогащенной более тугоплавким компонентом, а периферийная – легкоплавким компонентом (А). Это явление называется дендритной ликвацией, которая снижает прочностные свойства сплавов. Ее предотвращение возможно за счет медленного охлаждения сплава, обеспечивающего его равновесную кристаллизацию.
В случае возникновения дендритной ликвации она устраняется путем длительного диффузионного отжига сплава. Происходящие при этом диффузионные процессы выравнивают химический состав в зернах.
Во время пластической деформации металлического материала внешняя сила должна преодолеть сопротивление передвижению дислокаций, которое определяется значением силы Пайерлса-Набарро. Эта сила зависит от интенсивности межатомного взаимодействия в кристаллической решетке сплава.
Атомы растворимого компонента образуют в решетке твердого раствора более прочную металлическую связь с атомами компонента-растворителя, чем в решетках обоих чистых компонентов. Из-за этого сопротивление пластической деформации твердого раствора с увеличением содержания растворенного в нем другого компонента должно возрастать по криволинейному закону.
8. Плавление металлов и строение расплавов
Плавление – это физический процесс перехода металла из твердого состояния в жидкое расплавленное. Плавление – процесс, обратный кристаллизации, происходит при температуре выше равновесной, т. е. при перегреве. Поскольку жидкий металл обладает большей внутренней энергией, чем твердый, при кристаллизации выделяется теплота. Между теплотой Q и температурой кристаллизации Тк существует определенная связь. Степень перегрева при плавлении металлов не превышает нескольких градусов.
В жидком состоянии атомы вещества из-за теплового движения перемещаются беспорядочно, в жидкости имеются группировки атомов небольшого объема, в их пределах расположение атомов аналогично расположению в решетке кристалла. Эти группировки неустойчивы, они рассасываются и снова появляются в жидкости. При переохлаждении жидкости некоторые крупные группировки становятся устойчивыми и способными к росту. Эти устойчивые группировки атомов называют центрами кристаллизации (зародышами). Для осуществления процесса плавления необходимо наличие некоторого перегрева над равновесной температурой,
Жидкости, находящиеся при температуре, близкой к температуре плавления называются расплавами. Расплавы бывают металлическими, ионными, полупроводниковыми, органическими и высокополимерными. В зависимости от того, какие химические соединения образуют расплавы, выделяют солевые, оксидные, оксидно-силикатные и другие расплавы.
Большинство расплавов имеют в составе искосаэдрические частицы.
В процессе плавления химические связи в расплавах подвергаются видоизменению. В полупроводниках наблюдается образование металлической проводимости, у некоторых галогенидов вместо ионной проводимости происходит снижение электрической проводимости из-за образования расплава с молекулярным составом. Уровень температуры также влияет на тип связи в расплавах.
Среднее координационное число и межатомные расстояния также являются характеристиками расплавов. В процессе плавления металлов происходит уменьшение координационного числа примерно на 10–15 %. В тоже время межатомные расстояния остаются прежними. При плавлении полупроводников происходит увеличение их координационного числа в 1,5 раза, расстояние между атомами также увеличивается. Многокомпонентные расплавы характеризуются неравновесными, метастабильными состояниями, которые имеют взаимосвязь со структурой первоначальных твердых фаз.
Во многих случаях встречается отставание (гистерезис) свойств расплавов в процессе изменения температуры. На свойства и строения расплавов оказывают влияние следующие факторы: температура, время выдержки, скорость колебания температуры, тот материал, из которого создан контейнер, а также наличие примесей.
Состав расплавов отличается своей сложностью. В ионных расплавах могут содержаться простые или комплексные ионы, недиссоциированные и полимерные молекулы, а также свободные объемы. Силикатные расплавы могут содержать изолированные кремнекислородные тетраэдры и образуемые ими цепи, кольца, сетки и каркасы.
Однозначная модель структуры расплавов формируется достаточно сложно, т. к. расплавы содержат разные виды частиц и связи. Основная функция моделей: определение и интерпретация свойств расплавов, а также расчет свойств.
Расплавы в металлургической области подразделяются на промежуточные, побочные и конечные продукты. Используя расплавы в качестве электролитов, в металлургии производят и рафинируют металлы, а также осуществляют нанесение покрытий. Многие сплавы образуются в виде расплавов. Монокристаллы и эпитаксиальные пленки выращиваются из расплавов. В качестве катализаторов принято использовать металлические, солевые и оксидные расплавы. Солевые расплавы применяют в отжиговых и закалочных ваннах, высокотемпературных топливных элементах, в качестве теплоносителей, флюсов в процессе пайки и сварки металлов, реакционных сред в неорганическом и органическом синтезе, а также как поглотители, экстрагенты и т. д. Некоторые расплавы используются для получения силикатных, фторидных и иных специальных стеков и аморфных металлов.