Чтение онлайн

на главную - закладки

Жанры

Материаловедение. Шпаргалка
Шрифт:

Испытания на твердость производятся быстро и не требуют сложных образцов, позволяют судить о других механических свойствах металлов (например, о пределе прочности). Распространены методы вдавливания твердого наконечника.

Определение твердости методом Роквелла. В поверхность испытываемого образца вдавливают стальной или алмазный конус с углом 120° или стальной закаленный шарик диаметром 1,59 мм и по глубине проникновения в поверхность оценивают твердость материала.

На твердомере Роквелла нанесены три шкалы: А (черного цвета) – испытание ведут алмазным конусом, твердость обозначается HRA; В (красного цвета) – испытание ведут шариком, твердость обозначается Н13В; С (черного цвета) – испытание ведут стальным конусом,

твердость обозначается HRC.

Определение твердости методом Виккерса. В поверхность образца вдавливают четырехгранную алмазную пирамиду и по диагонали отпечатка определяют твердость.

Метод Виккерса позволяет измерять твердость мягких и твердых металлов и сплавов и твердость тонких поверхностных слоев.

Испытания на удар определяют способность металла сопротивляться ударным нагрузкам, которым детали машин подвергаются в процессе работы.

Испытания ударной нагрузкой проводятся над образцами стандартной формы на приборах, которые называются маятниковыми копрами.

Ударная вязкость – работа, затраченная на ударный излом образца и отнесенная к площади его поперечного сечения в месте надреза. Испытания на ударную вязкость проводят для оценки склонности материалов к хрупкому разрушению

Изгиб – более мягкий способ нагружения, чем растяжение. На изгиб испытывают малопластичные материалы. Испытания проводят на образцах большой длины, цилиндрической или прямоугольной формы. Их устанавливают на две опоры. Определяемыми характеристиками служат предел прочности и стрела прогиба.

12. Фазовые превращения в твердом состоянии

Фаза – это однородная часть системы, которая отделена от другой части системы (фазы) поверхностью раздела, при переходе через которую химический состав или структура изменяются скачком.

При кристаллизации чистого металла в системе имеются две фазы: жидкая (расплавленный металл) и твердая (зерна затвердевшего металла). В твердых сплавах фазами могут быть зерна чистого металла, зерна твердого раствора и зерна химического соединения. Многие металлы в жидком состоянии растворяются один в другом в любых соотношениях. В результате растворения образуется однородный жидкий раствор с равномерным распределением атомов одного металла среди атомов другого металла. Благодаря указанному взаимодействию на практике с целью равномерного распределения веществ в сплаве, прибегают к их расплавлению. Некоторые металлы, сильно различающиеся размерами атомов, не растворяются в жидком состоянии, а другие металлы растворяются в жидком состоянии ограниченно. При образовании сплавов в процессе их затвердевания возможно различное взаимодействие компонентов.

Если в процессе кристаллизации сила взаимодействия между однородными атомами больше силы взаимодействия между разнородными атомами, то после кристаллизации образуется механическая смесь, состоящая из зерен чистых металлов. В этом случае в твердом сплаве будут присутствовать зерна одного чистого металла и рядом с ними зерна другого чистого металла. Такая форма взаимодействия возникает при большом различии в свойствах входящих в сплав металлов.

Другой формой взаимодействия между веществами, входящими в состав сплава, является образование твердых растворов.

Твердые растворы – это твердые фазы, в которых соотношения между компонентами могут изменяться. В твердом растворе так же, как и в чистых металлах, атомы в пространстве расположены закономерно и образуют кристаллическую решетку. Этим они и отличаются от жидких растворов. В твердом растворе одно из входящих в состав сплава веществ сохраняет присущую ему кристаллическую решетку, а второе вещество, которое утратило свое кристаллическое строение, в виде отдельных атомов распределяется в кристаллической решетке первого. Первое вещество является растворителем, а второе – растворимым. В зависимости от характера распределения атомов растворимого элемента различают

твердые растворы внедрения, замещения и вычитания; независимо от типа твердого раствора общим для них является то, что они однофазны и существуют в интервале концентраций. Для твердых растворов характерен металлический тип связи.

Наименьшие размеры атомов имеют некоторые металлоиды – водород, азот, углерод, бор, которые образуют с металлами твердые растворы внедрения. Но и у этих элементов размер атомов несколько превышает 12б размер межатомных промежутков в кристаллической решетке металлов, поэтому при образовании твердых растворов внедрения решетка искажается и в ней возникают напряжения. При этом концентрация твердого раствора внедрения не может быть высокой. Она редко превышает 1–2%. В твердых растворах замещения атомы растворимого элемента занимают места атомов основного металла. Посторонние атомы могут замещать атомы растворителя в любых местах, поэтому такие растворы называют неупорядоченными твердыми растворами. Размеры атомов растворимого элемента всегда отличаются от размеров атома растворителя (они больше или меньше), поэтому при образовании твердого раствора замещения кристаллическая решетка металлара-створителя искажается, не утрачивая при этом своего основного строения. Твердые растворы замещения могут быть ограниченными и неограниченными. Одно из условий неограниченной растворимости – размерный фактор. Чем больше различие в атомных радиусах, тем меньше растворимость.

С понижением температуры в твердых растворах замещения происходит процесс перераспределения атомов, в результате которого атомы растворенного элемента займут строго определенные места в решетке растворителя. Такие твердые растворы называют упорядоченными твердыми растворами, а их структуру – сверхструктурой.

Некоторые элементы видоизменяют свое кристаллическое строение в зависимости от изменения внешних условий – температуры и давления. В твердом состоянии литий, молибден имеют объемно-центрированную кубическую решетку; алюминий, серебро, золото, платина – гранецентрированную, а магний, цирконий – гексагональную. При изменении температуры может оказаться, что для того же металла более устойчивой будет другая решетка, чем та, которая была при другой температуре. Это явление носит название полиморфизма. Каждый вид решетки представляет аллотропическое видоизменение или модификацию. При полиморфных превращениях металлов основное значение имеет температура. Превращение одной аллотропической формы в другую происходит при постоянной температуре, называемой температурой полиморфного превращения и сопровождается тепловым эффектом, подобно явлениям плавление-затвердевание или испарение-конденсация. Это связано с необходимостью затраты определенной энергии на перестройку кристаллической решетки.

13. Упругая и пластическая деформация металлов

Деформация – это изменение формы и размеров тела, деформация может вызываться воздействием внешних сил, а также другими физико-механическими процессами, которые происходят в теле. К деформациям относятся такие явления, как сдвиг, сжатие, растяжение, изгиб и кручение.

Упругая деформация – это деформация, которая исчезает после снятия нагрузки. Упругая деформация не вызывает остаточных изменений в свойствах и структуре металла; под действием приложенной нагрузки происходит незначительное обратимое смещение атомов.

При растяжении монокристалла возрастают расстояния между атомами, а при сжатии атомы сближаются. При смещении атомов из положения равновесия нарушается баланс сил притяжения и электростатического отталкивания. После снятия нагрузки смещенные атомы из-за действия сил притяжения или отталкивания возвращаются в исходное равновесное состояние и кристаллы приобретают первоначальные размеры форму.

Деформация может быть упругой, исчезающей после снятия нагрузки, и пластической, остающейся после снятия нагрузки.

Поделиться:
Популярные книги

Вдовье счастье

Брэйн Даниэль
1. Ваш выход, маэстро!
Фантастика:
попаданцы
историческое фэнтези
фэнтези
5.00
рейтинг книги
Вдовье счастье

Крепость над бездной

Лисина Александра
4. Гибрид
Фантастика:
боевая фантастика
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Крепость над бездной

Прорвемся, опера! Книга 4

Киров Никита
4. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 4

Возвышение Меркурия. Книга 12

Кронос Александр
12. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 12

Черный дембель. Часть 2

Федин Андрей Анатольевич
2. Черный дембель
Фантастика:
попаданцы
альтернативная история
4.25
рейтинг книги
Черный дембель. Часть 2

Кодекс Охотника. Книга XV

Винокуров Юрий
15. Кодекс Охотника
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XV

Как я строил магическую империю

Зубов Константин
1. Как я строил магическую империю
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю

Звездная Кровь. Изгой

Елисеев Алексей Станиславович
1. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой

Камень. Книга 3

Минин Станислав
3. Камень
Фантастика:
фэнтези
боевая фантастика
8.58
рейтинг книги
Камень. Книга 3

Монстр из прошлого тысячелетия

Еслер Андрей
5. Соприкосновение миров
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Монстр из прошлого тысячелетия

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Мужчина моей судьбы

Ардова Алиса
2. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.03
рейтинг книги
Мужчина моей судьбы

Ученик. Книга вторая

Первухин Андрей Евгеньевич
2. Ученик
Фантастика:
фэнтези
5.40
рейтинг книги
Ученик. Книга вторая